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Abstract

The purpose of the present paper is to introduce recursive methods for
constructing simple t-designs, s-resolvable t-designs, and large sets of t-designs.
The results turn out to be very effective for finding these objects. In particular,
they reveal a fundamental property of the considered designs. Consequently,
many new infinite series of simple t-designs, t-designs with s-resolutions and
large sets of t-designs can be derived from the new constructions. For example,
by starting with an important result of Teirlinck stating that for every natural
number t and for all N > 1 there is a large set LS[N ](t, t + 1, t + N · `(t)),
where `(t) =

∏t
i=1 λ(i) · λ∗(i), λ(t) = lcm(

(
t
m

)
|m = 1, 2, . . . , t) and λ∗(t) =

lcm(1, 2, . . . , t+ 1), we obtain the following statement. If (t+ 2) is composite,
then there is a large set LS[N ](t, t + 2, t + 1 + N · `(t)) for all N > 1. If
(t+ 2) is prime, then there is an LS[N ](t, t+ 2, t+ 1 +N · `(t)) for any N with
gcd(t+ 2, N) = 1.

Mathematics Subject Classification: 05B05
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1 Introduction

Constructions of simple t-designs are a central theme in t-design theory. Several major
approaches to the problem could be found in the literature such as the use of a possible
automorphism group, the construction of large sets and the recursive construction
methods. Automorphism group methods often need the use of computers to deal with
huge combinatorial problems. For example, in 1982 Magliveras and Leavitt showed
in a pioneer work the existence of the first non-trivial simple 6-designs by using
groups [27]. Another way of dealing with methods by means of groups is to carry
out group-theoretic arguments by using the knowledge of the group structures only.
Actually, a great deal of simple t-designs are obtained by using groups, either through
computer-based approaches [20, 21, 23, 24, 6, 7] or through group-theoretic arguments
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[13, 3, 4, 5, 10, 11, 9, 16, 30]. In a seminal paper in 1987 [31] Teirlinck proved the
existence of non-trivial simple t-designs for arbitrarily large t by constructing large
sets. This achievement strongly motivates numerous researchers to develop further
this part of t-design theory [18, 19, 1, 39, 26, 22, 25]. Recursive methods appear to be
a vital element for the study of t-designs. Normally, statements obtained by recursive
approaches are of general nature and do not limit on values of t [33, 34, 28, 35, 36,
37, 38].

In the present paper we introduce recursive methods for constructing t-designs, s-
resolvable t-designs and large sets of t-designs. In fact, the results reveal a remarkable
connection between the ‘starting’ and ‘resulting’ designs, and therefore, they are very
useful. For example, they allow us to construct large sets of t-designs for arbitrarily
large t which were not known before.

We recall some basic notation and definitions which are used in the remaining
sections. A t-design, denoted by t-(v, k, λ), is a pair (X,B), where X is a v-set of
points and B is a collection of k-subsets of X, called blocks, such that every t-subset
of X is a subset of exactly λ blocks, and λ is called the index of the design. A t-design
is called simple if no two blocks are identical, otherwise, it is called non-simple. A t-
(v, k, 1) design is called a Steiner t-design. The necessary conditions for the existence
of a t-(v, k, λ) design are that

λi := λ

(
v − i
t− i

)
/

(
k − i
t− i

)
= λ

(
v − i
k − i

)
/

(
v − t
k − t

)
, 0 ≤ i ≤ t

are integers. Equivalently,

λ

(
v − i
t− i

)
≡ 0

(
mod

(
k − i
t− i

))
, 0 ≤ i ≤ t,

or

λ

(
v − i
k − i

)
≡ 0

(
mod

(
v − t
k − t

))
, 0 ≤ i ≤ t.

If these divisibility conditions for t, k , v , λ are satisfied, we may say for short that
the parameters t-(v, k, λ) are admissible. The smallest positive integer λ for which
these necessary conditions are satisfied is denoted by λmin(t, k, v) or simply λmin. If B
is the set of all k-subsets of X, then (X,B) is a t-(v, k, λmax) design, called the complete
design, where λmax =

(
v−t
k−t

)
. If we complement each block of a t-(v, k, λ) design with

respect to the point set X, we get a t-(v, v − k, λ∗) design with λ∗ = λ
(
v−k
t

)
/
(
k
t

)
,

hence we usually assume k ≤ v/2. Moreover, if there is a t-(v, k, λ) design, then λmin

divides λ; and we normally assume that λ ≤ λmax/2.
A t-(v, k, λ) design (X,B) is called s-resolvable, for 1 ≤ s ≤ t− 1, if the block set

B can be partitioned into N ≥ 2 disjoint classes B1, . . . ,BN such that each (X,Bi) is
an s-(v, k, δ) design, for i = 1, . . . , N . Each Bi is called an s-resolution class or simply
a resolution class. It is also said that (X,B) has an s-resolution; obviously N = λs/δ.
The necessary conditions for a t-(v, k, λ) design to be s-resolvable are that

N | λi, 0 ≤ i ≤ s.
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If the complete k-(v, k, 1) design can be partitioned into N disjoint t-(v, k, λ) designs,
for t < k, then it is said that there is a large set of t-(v, k, λ) designs, denoted by
LS[N ](t, k, v), or LSλ(t, k, v). All designs in this paper are assumed to be simple.
When the discussion concerns non-simple t-designs, this will be stated explicitly.

2 The first theorem

Let (Z,B) be a simple t-(v, k, λ) design, where Z = {1, . . . , v}. Let X = Z∪{v+1} =
{1, . . . , v, v+1}. Define Zi = X \{i} for i = 1, . . . , v+1. In particular, Zv+1 = Z. Let
(Zi,Bi) be a copy of (Z,B) defined on the point set Zi = {1, . . . , i−1, i+1, . . . , v+1}
for i = 1, . . . , v + 1; note that (Zv+1,Bv+1) = (Z,B). For a given i = 1, . . . , v, the
blocks of Bi are obtained from those of Bv+1 as follows. Let B = {i1, i2, . . . , ik} ∈ Bv+1.

1. If i 6∈ {i1, . . . , ik}, then B ∈ Bi.

2. If i ∈ {i1, . . . , ik}, say i = ij, then Bij := {i1, . . . , ij−1, v + 1, ij+1, . . . , ik} ∈ Bi,
i.e. Bij is derived from B by replacing ij with v + 1.

For each i ∈ X, define

Di = {{i} ∪B | B ∈ Bi},

and
D = D1 ∪ D2 ∪ · · · ∪ Dv+1.

We claim that (X,D) is a t-(v + 1, k + 1,Λ∗) design with repeated blocks, where
Λ∗ = λ v+1−t

k+1−t(k+1), and each block of D is repeated (k+1) times. Let T = {i1, . . . , it}
be a t-subset of X.

1. Consider Di, i 6∈ {i1, . . . , it}. Then T ⊆ Zi. Since Di = {{i}∪B | B ∈ Bi}, and
(Zi,Bi) is a t-(v, k, λ) design, there are λ blocks D = {i} ∪ B ∈ Di containing
T . As there are (v + 1 − t) such Di with i 6∈ {i1, . . . , it}, there are altogether
(v + 1− t)λ blocks of this type in D containing T .

2. ConsiderDij = {{ij}∪B | B ∈ Bij} for the t remainingDij with ij ∈ {i1, . . . , it}.
Set Tij := T \ {ij}. Then Tij appears λt−1 = λ v+1−t

k+1−t times in the blocks of
(Zij ,Bij). Thus T appears tλt−1 times in the blocks of Di1 , . . . ,Dit .

The two cases 1. and 2. give

Λ∗ = λ(v + 1− t) + tλt−1

= λ
v + 1− t
k + 1− t

(k + 1),

as desired.
Next we show that (X,D) has repeated blocks and each block of D is repeated

(k + 1) times. Without loss of generality consider a block D = {v + 1} ∪ B ∈ Dv+1,
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where B = {i1, . . . , ik} ∈ Bv+1. Because (Zi,Bi) is a copy of (Zv+1,Bv+1), i = 1, . . . , v,
we see that

Bi1 = {v + 1, i2, . . . , ik} ∈ Bi1
Bi2 = {i1, v + 1, i3, . . . , ik} ∈ Bi2

... =
...

Bik = {i1, i2, . . . , ik−1, v + 1} ∈ Bik
It follows that the (k + 1) blocks

Di1 = {i1} ∪Bi1 ∈ Di1
Di2 = {i2} ∪Bi2 ∈ Di2

... =
...

Dik = {ik} ∪Bik ∈ Dik
D = {v + 1} ∪B ∈ Dv+1

are identical. These blocks are the only repeated blocks of D. This can be seen as
follows. If D′ is a repeated block of D, then D′ must be of the form D′ = {j}∪B with
B ∈ Bj for a j ∈ {i1, . . . , ik, v + 1}, say j = ih. But since any two blocks in Djh are
distinct, so D′ = Djh , where Djh is one of the (k+ 1) repeated blocks of D described
above. Hence, (X,D) is a non-simple t-(v + 1, k + 1, λ v+1−t

k+1−t(k + 1)) design, in which

any block is repeated (k+ 1) times, which proves the claim. Define Λ = λ v+1−t
k+1−t . Now

assume that the conditions

Λ

(
v + 1− i
k + 1− i

)
≡ 0

(
mod

(
v + 1− t
k + 1− t

))
, 0 ≤ i ≤ t (1)

are satisfied, then by removing the repeated blocks of (X,D) we obtain a simple
t-(v + 1, k + 1,Λ) design (X, C). Note that the conditions in (1) are the necessary
conditions for the existence of (X, C). A close look shows that the conditions in (1)
are already satisfied for 1 ≤ i ≤ t, because these cases coincide with the divisibility
conditions

λ

(
v − j
k − j

)
≡ 0

(
mod

(
v − t
k − t

))
, 0 ≤ j ≤ t− 1 (2)

for the t-(v, k, λ) design (Z,B), which are assumed to be satisfied. Consequently, the
conditions in (1) are fulfilled, if for i = 0 we have

Λ

(
v + 1

k + 1

)
≡ 0

(
mod

(
v + 1− t
k + 1− t

))
,

or equivalently,

Λ0 = Λ

(
v + 1

k + 1

)
/

(
v + 1− t
k + 1− t

)
= λ

v + 1− t
k + 1− t

(
v + 1

k + 1

)
/

(
v + 1− t
k + 1− t

)
= λ

(
v + 1

k + 1

)
/

(
v − t
k − t

)
is an integer. Hence we have proved the following theorem.
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Theorem 2.1 Assume that there exists a simple t-(v, k, λ) design.

(i) Then there exists a non-simple t-(v + 1, k + 1, λ v+1−t
k+1−t(k + 1)) design, in which

every block is repeated (k + 1) times.

(ii) If λ
(
v+1
k+1

)
/
(
v−t
k−t

)
is an integer, then there exists a simple t-(v + 1, k + 1, λ v+1−t

k+1−t)
design.

In Theorem 2.1, if λ
(
v+1
k+1

)
/
(
v−t
k−t

)
is an integer, then we simply say that the parameters

t-(v + 1, k + 1,Λ) with Λ = λ v+1−t
k+1−t are admissible. Equivalently, Λ is a multiple of

λmin(t, k + 1, v + 1).

Remark 2.1 It is worth mentioning the special case with v = 2k + 1 of Theorem
2.1. Suppose that there is a t-(2k+1, k, λ) design. Obviously, λ

(
v+1
k+1

)
/
(
v−t
k−t

)
is integral

in this case, since λ
(
v+1
k+1

)
/
(
v−t
k−t

)
= λ

(
2k+2
k+1

)
/
(
2k+1−t
k−t

)
= 2k+2

k+1
λ
(
2k+1
k

)
/
(
2k+1−t
k−t

)
= 2λ0.

Thus the condition in Theorem 2.1 (ii) is always satisfied. Therefore we obtain a
t-(2k+ 2, k+ 1, λ2k+2−t

k+1−t ) design. The result for this special case can be found in [34],
or [37], however it is proven by a different method.

The following examples illustrate Theorem 2.1.

• Consider a known 6-(30, 10, λ) design, with λ = m42, 1 ≤ m ≤ 126 [14].
Then we have Λ = λ v+1−t

k+1−t = m · 42 · 5. Thus the parameters 6-(31, 11,Λ) are
admissible, if and only if Λ is a multiple of λmin(6, 11, 31) = 462 = 42 ·11. Since
λ
(
v+1
k+1

)
/
(
v−t
k−t

)
= m · 31 · 15 · 29 · 21 · 13/11, the integral condition for λ

(
v+1
k+1

)
/
(
v−t
k−t

)
becomes 11 | m. There are 27 known values of m, of which 25 with 11 - m, i.e.
λ
(
v+1
k+1

)
/
(
v−t
k−t

)
is not an integer. The other two m = 99, 121 with 11 |m give rise

to 6-(31, 11, 45 · 462), and 6-(31, 11, 55 · 462) designs.

• By starting with a known 7-(34, 10,m15) design for any m ∈ { 35, 40, 43, 44,
47, 48, 49, 52, 55, 56, 59, 60, 63, 64, 67, 68, 71, 72, 75, 76, 79, 83, 84, 87,
88, 91, 92, 95, 96 } [14], we find that Λ = λ v+1−t

k+1−t = m15 · 7 = m105. Since
λmin(7, 11, 35) = 105, the parameters 7-(35, 11,m105) are admissible. Hence we
get a simple 7-(35, 11,m105) design for all these values of m.

If we repeat applying Theorem 2.1 to 7-(35, 11,m105) designs, we find that Λ =
λ v+1−t
k+1−t = m29 ·21. Since λmin(7, 12, 36) = 21, the parameters 7-(36, 12,m29 ·21)

are admissible. Hence we get a simple 7-(36, 12,m29·21) design for all the values
of m above.

3 The second theorem

We keep the notation from the previous section. Now assume that the t-(v, k, λ)
design (Z,B) is s-resolvable. Let s-(v, k, δs) be the parameters of the designs in the
resolution of (Z,B), and let N be the number of resolution classes. Thus, the block

5



set B can be written as B = B1 ∪ · · · ∪ BN , which is a partition of B into subsets Bj
such that (Z,Bj) is an s-(v, k, δs) design for j = 1, . . . , N . By Theorem 2.1 (X,D) is
a non-simple t-(v + 1, k + 1,Λ(k + 1)) design with Λ = λ v+1−t

k+1−t , in which any block is

repeated (k+ 1) times. In particular, applying Theorem 2.1 to (Z,Bj), j = 1, . . . , N ,
yields a non-simple s-(v+ 1, k+ 1,∆s(k+ 1)) design (X,Dj) with ∆s = δs

v+1−s
k+1−s , and

any block is repeated (k+ 1) times. It follows that there is a partition of (X,D) into
N disjoint non-simple s-designs (X,D1), . . . , (X,DN). Now assume that λ

(
v+1
k+1

)
/
(
v−t
k−t

)
is an integer. Again by Theorem 2.1, if the divisibility conditions

∆s

(
v + 1− i
k + 1− i

)
≡ 0

(
mod

(
v + 1− s
k + 1− s

))
, 0 ≤ i ≤ s (3)

are satisfied, then by removing the repeated blocks of (X,Dj) we obtain a simple
s-(v + 1, k + 1, δs

v+1−s
k+1−s) design (X, Cj) for j = 1, . . . , N. Thus, in this way, the non-

simple design (X,D) will yield a simple t-(v + 1, k + 1,Λ) design (X, C), which is
resolvable into s-designs (X, Cj), j = 1, . . . , N. Moreover, the s-resolvability of (Z,B)
implies that Nδi = λi for 0 ≤ i ≤ s, or equivalently,

N | λi for 0 ≤ i ≤ s.

Thus the s-resolvability conditions in (3) for (X, C) are equivalent to

N | Λi for 0 ≤ i ≤ s.

Observe that the conditions N | Λi for 1 ≤ i ≤ s are met, since they are identical
to N | λj for 0 ≤ j ≤ s − 1, which are already satisfied by the assumption. Thus,
the conditions N | Λi for 0 ≤ i ≤ s are satisfied, if N | Λ0, which is N | λ

(
v+1
k+1

)
/
(
v−t
k−t

)
.

Hence, we have proved the following result.

Theorem 3.1 Assume that there exists a simple s-resolvable t-(v, k, λ) design with
N resolution classes. If λ

(
v+1
k+1

)
/
(
v−t
k−t

)
is an integer and N divides λ

(
v+1
k+1

)
/
(
v−t
k−t

)
, then

there exists a simple s-resolvable t-(v + 1, k + 1, λ v+1−t
k+1−t) design.

The most important consequence of Theorem 3.1 is the following corollary.

Corollary 3.2 If there exists a large set LS[N ](t, k, v) such that N divides
(
v+1
k+1

)
,

then there exists a large set LS[N ](t, k + 1, v + 1).

Proof. An LS[N ](t, k, v) is a partition of the complete k-(v, k, 1) design into N
disjoint t-designs with t < k. The complete design is also a t-(v, k,

(
v−t
k−t

)
) design.

Therefore, λ
(
v+1
k+1

)
/
(
v−t
k−t

)
=
(
v+1
k+1

)
is an integer. Moreover, the resulting t-(v + 1, k +

1, λ v+1−t
k+1−t) design becomes a simple t-(v+1, k+1,

(
v+1−t
k+1−t

)
) design, which is the complete

(k + 1)-(v + 1, k + 1, 1) design. Hence, the corollary follows. 2

Remark 3.1 The following recursive construction for large sets is known: “If an
LS[N ](t, k, v) and an LS[N ](t, k+ 1, v) exist, then there exists an LS[N ](t, k+ 1, v+
1)”, see [2] and also [37]. In fact, Corollary 3.2 is the most general result we can get
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from a recursive construction of large sets, since no assumption is required, except for
the necessary divisibility conditions. Actually, Corollary 3.2 can be stated as follows.

If there exists an LS[N ](t, k, v), then there exists an LS[N ](t, k+1, v+1), provided
that the parameters of the latter are admissible.

It is appropriate to include a remark on the conditions in Theorem 3.1. The
first condition requires that λ

(
v+1
k+1

)
/
(
v−t
k−t

)
is an integer and the second that N divides

λ
(
v+1
k+1

)
/
(
v−t
k−t

)
. Thus, if the first condition is not satisfied, then neither is the second.

However, if the first condition is fulfilled, then the second does not need to be met.
The following example clarifies these cases and also shows an iterated use of Theorem
3.1.

Consider a Steiner 5-(84, 6, 1) design whose blocks are a union of 18 long block
orbits of PSL2(83), (i.e. orbits of length |PSL2(83)|). The design is thus 3-resolvable
with N = 18 resolution classes [8]. Applying Theorem 3.1 yields a 3-resolvable 5-
(85, 7, 4 · 10) design, since both conditions are satisfied. By repeated application
to this resulting 5-(85, 7, 4 · 10) design, we again get a 3-resolvable 5-(86, 8, 54 · 20)
design. Now, by applying Theorem 3.1 to the 5-(86, 8, 54 · 20) design, we find that
λ
(
v+1
k+1

)
/
(
v−t
k−t

)
= 87 · 43 · 85 · 7 · 83 · 41 is an integer. Hence, we get a 5-(87, 9, 738 · 30)

design. However, since N = 18 does not divide 87 · 43 · 85 · 7 · 83 · 41, the latter is not
3-resolvable.

Here is an example for Corollary 3.2. Consider an LS1(2, 4, 16) = LS[91](2, 4, 16)
constructed by Mathon [29]. Since 91 |

(
17
5

)
, Corollary 3.2 gives an LS5(2, 5, 17) =

LS[91](2, 5, 17). Note that 5 = λmin(2, 5, 17). Again if we apply Corollary 3.2 to
LS[91](2, 5, 17), we find that 91 |

(
18
6

)
. Hence there also exists an LS[91](2, 6, 18). It

appears that LS[91](2, 5, 17) and LS[91](2, 6, 18) are unknown to date.
We should note that LS[91](2, 4, 16) is the second known large set of Steiner t-

(v, k, 1) designs with t ≥ 2 and k ≥ 4; the first one is LS1(2, 4, 13) = LS[55](2, 4, 13)
[15, 17]. However, there is no LS[55](2, 5, 14), since these parameters are not admis-
sible, in particular 55 -

(
14
5

)
.

Again we remark that the conditions of Theorems 2.1, 3.1 and Corollary 3.2 are
simply the necessary divisibility conditions required for a t-design, or a t-design with
resolution to exist. Generally, these necessary conditions are implicitly assumed,
when the existence or the resolvability of a design is concerned. Hence, in this sense,
the above theorems and corollary actually prove an intrinsic connection between the
‘starting’ and ‘resulting’ designs.

4 Applications

A few examples in the preceding sections have already suggested that the methods are
useful. Actually, if applied fully, the results will produce infinitely many new t-designs,
t-designs with s-resolutions, and large sets of t-designs. In this section, however, we
limit our attention to some infinite series of t-designs for t ≥ 4, which are derived from
Theorems 2.1, 3.1 and Corollary 3.2, as an assertion of their unexpected strength.
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4.1 t-designs and s-resolvable t-designs

1. We begin with a 4-(2n + 1, 5, 5) design, for n odd, n ≥ 5, constructed by Alltop
[3]. It is easily checked that λ

(
v+1
k+1

)
/
(
v−t
k−t

)
= 5
(
2n+2
6

)
/
(
2n−3
1

)
is an integer, because

n is odd. Hence, by Theorem 2.1(ii), there is a 4-(2n + 2, 6, 5(2n−1− 1)) design.
Moreover, Alltop’s design is 3-resolvable with N = (2n−2)/6 resolution classes.
It can also be verified that N divides λ

(
v+1
k+1

)
/
(
v−t
k−t

)
, thus, by Theorem 3.1 the

resulting 4-(2n+2, 6, 5(2n−1−1)) design is 3-resolvable with N resolution classes.

2. When starting with a 3-resolvable 4-(2n + 1, 6, 10) design, for n odd, n ≥ 5,
with N = (2n − 2)/6 resolution classes, constructed by Bierbrauer [10], we
find that λ

(
v+1
k+1

)
/
(
v−t
k−t

)
= 10

(
2n+2
7

)
/
(
2n−3
2

)
is an integer if n ≡ 0, 1 (mod 3),

hence, by Theorem 2.1 there is a 4-(2n + 2, 7, 20
3

(2n−1 − 1)) design. Moreover,

N | λ
(
v+1
k+1

)
/
(
v−t
k−t

)
, if n ≡ 0 (mod 3). In this case, the resulting design is 3-

resolvable by Theorem 3.1.

3. Consider a 3-resolvable 4-(2n + 1, 9, 84) design, for gcd(n, 6) = 1, n ≥ 5, with
N = (2n−2)/6 resolution classes, constructed by Bierbrauer [11]. It is straight-
forward to verify that λ

(
v+1
k+1

)
/
(
v−t
k−t

)
= 84

(
2n+2
10

)
/
(
2n−3
5

)
is an integer. Moreover

N | λ
(
v+1
k+1

)
/
(
v−t
k−t

)
, if n ≡ 3 (mod 4). Hence, by Theorem 3.1, we obtain a 3-

resolvable 4-(2n + 2, 10, 28(2n−1 − 1)) design for gcd(n, 6) = 1, n ≡ 3 (mod 4),
n ≥ 5.

We summarize these results in the following theorem.

Theorem 4.1 Let n be an odd integer such that n ≥ 5. Then we have the following.

(i) There exists a 3-resolvable 4-(2n + 2, 6, 5(2n−1− 1)) design with N = (2n− 2)/6
resolution classes.

(ii) If n ≡ 0, 1 (mod 3), then there exists a 4-(2n + 2, 7, 20
3

(2n−1− 1)) design. More-
over if n ≡ 0 (mod 3), the design is 3-resolvable with N = (2n−2)/6 resolution
classes.

(iii) If gcd(n, 6) = 1, then there exists a 4-(2n + 2, 10, 28(2n−1 − 1)) design. Fur-
thermore, if n ≡ 3 (mod 4), the design is 3-resolvable with N = (2n − 2)/6
resolution classes.

Consider a further example of an infinite class of 5-designs. By Theorem 5.1 [38]
there exists a simple 5-(5+28m, 6, h4m) design for h = 1, 2, 3 and m ≥ 1. By applying
Theorem 2.1, we find that λ

(
v+1
k+1

)
/
(
v−t
k−t

)
= 4hm

(
6+28m

7

)
/
(
28m
1

)
= h4m(6+28m) · · · (1+

28m)/7 · 6 · 5 · 4 · 3 · 2 is an integer if and only if 7 | m, and in this case we get a
5-(6 + 28m, 7, h2m(1 + 28m)) design. Hence the next result follows.

Theorem 4.2 There exists a simple 5-(6 + 28m, 7, h2m(1 + 28m)) design for h =
1, 2, 3 and for any positive integer m such that 7 |m.
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4.2 Large sets of t-designs

In [32] Teirlinck constructed infinite series of large sets of t-(t + N · `(t), t + 1, `(t))
designs for every natural number t and for all N > 1, where `(t) =

∏t
i=1 λ(i) · λ∗(i),

λ(t) = lcm(
(
t
m

)
| m = 1, 2, . . . , t) and λ∗(t) = lcm(1, 2, . . . , t + 1). Equivalently, an

LS[N ](t, t+ 1, t+N · `(t)) exists. This is an important result in t-design theory.
Consider an LS[N ](t, t+ 1, t+N · `(t)). By applying Corollary 3.2 we will obtain

an LS[N ](t, t+ 2, t+ 1 +N · `(t)), if
(
t+1+N ·`(t)

t+2

)
/N is an integer.

Now(
t+1+N ·`(t)

t+2

)
N

=
(t+ 1 +N · `(t))(t+N · `(t))(t− 1 +N · `(t)) · · · (1 +N · `(t))N · `(t)

(t+ 2)(t+ 1)t(t− 1) · · · 2 · 1 ·N
.

First of all note that (t + 1)!N divides N · `(t). More precisely, t!N | N · λ(t)λ(t −
1) · · ·λ(2)λ(1) and (t+ 1) | λ∗(t), so (t+ 1)!N |N · λ(t)λ(t− 1) · · ·λ(2)λ(1) · λ∗(t).

• If t + 2 is composite, we write t + 2 = a · b with 2 ≤ a, b ≤ t. Then a · b |
λ∗(t−1)·λ∗(t). Moreover, since gcd(t+2, t+1) = gcd(a, t+1) = gcd(b, t+1) = 1,
we have a·b·(t+1) | λ∗(t−1)·λ∗(t). So, (t+2)(t+1)!N | `(t). Thus

(
t+1+N ·`(t)

t+2

)
/N

is an integer for all N > 1.

• If t + 2 is prime, then gcd(t + 2, `(t)) = 1. We have either (t + 2) | N or
(t+ 2) - N . If (t+ 2) |N , then (t+ 2) - (t+ 1 +N · `(t))(t+N · `(t))(t− 1 +N ·
`(t)) · · · (1 + N · `(t)), therefore

(
t+1+N ·`(t)

t+2

)
/N is not an integer. If (t + 2) - N ,

then (t + 2) | (t + 1 + N · `(t))(t + N · `(t))(t − 1 + N · `(t)) · · · (1 + N · `(t)).
Thus

(
t+1+N ·`(t)

t+2

)
/N is an integer for any N with (t+ 2) - N.

Hence, we have the following result.

Theorem 4.3 For every natural number t let λ(t) = lcm(
(
t
m

)
| m = 1, 2, . . . , t),

λ∗(t) = lcm(1, 2, . . . , t+ 1) and `(t) =
∏t

i=1 λ(i) · λ∗(i). Then

(i) if (t+ 2) is composite, there exists an LS[N ](t, t+ 2, t+ 1 +N · `(t)) for every
N ≥ 1,

(ii) if (t+ 2) is prime, there exists an LS[N ](t, t+ 2, t+ 1 +N · `(t)) for any N ≥ 1
with (t+ 2) - N .

Note that if we emphasize t-designs in place of large sets of t-designs, then Theorem
4.3 provides the following corollary.

Corollary 4.4 For every natural number t let λ(t) = lcm(
(
t
m

)
| m = 1, 2, . . . , t),

λ∗(t) = lcm(1, 2, . . . , t+ 1) and `(t) =
∏t

i=1 λ(i) · λ∗(i). Then there exists a t-(t+ 1 +
N · `(t), t + 2, `(t)(1 + N · `(t))/2) design for all N > 1, if (t + 2) is composite; and
for any N with (t+ 2) - N , if (t+ 2) is prime.
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We want to apply Corollary 3.2 to LS[N ](t, t+ 2, t+ 1 +N · `(t)) of Theorems 4.3
anew. For the sake of simplicity we assume that t ≥ 2, and check the conditions for
which

(
t+2+N ·`(t)

t+3

)
/N is an integer. For 2 ≤ t ≤ 5 it is easy to verify these conditions

directly from the values of `(t) and N and the result is as follows.

(i) If (t + 3) and (t + 2) are both composite, then
(
t+2+N ·`(t)

t+3

)
/N is an integer for

all N ≥ 1.

(ii) If (t+2) is prime, then
(
t+2+N ·`(t)

t+3

)
/N is an integer for all N ≥ 1 with (t+2) - N.

(iii) If (t+3) is prime, then
(
t+2+N ·`(t)

t+3

)
/N is an integer for all N ≥ 1 with (t+3) - N.

So, we have to prove the validity of (i), (ii), (iii) for all t ≥ 6. We begin with
a remark. If (t + 3) and (t + 2) are composite for t ≥ 6, and (t + 3) = A · B and
(t+ 2) = a · b are non-trivial factorizations, then 2 ≤ A,B, a, b ≤ t− 2. Now(
t+2+N ·`(t)

t+3

)
N

=
(t+ 2 +N · `(t))(t+ 1 +N · `(t))(t+N · `(t)) · · · (1 +N · `(t))N · `(t)

(t+ 3)(t+ 2)(t+ 1)t(t− 1) · · · 2 · 1 ·N
.

• Assume that (t + 3) and (t + 2) are both composite and (t + 3) = A · B,
(t + 2) = a · b, are their non-trivial factorizations with 2 ≤ A,B, a, b ≤ t − 2.
We have t! | λ(1) · λ(2) · . . . · λ(t) and (t + 1) | λ∗(t). Since gcd(t + 2, t + 1) =
gcd(a, t + 1) = gcd(b, t + 1) = 1, it follows that b · (t + 1) | λ∗(t). Again since
gcd(t + 3, t + 2) = gcd(A, t + 2) = gcd(B, t + 2) = 1, we have A · B · a |
λ∗(t − 2) · λ∗(t − 1). So, A · B · a · b · (t + 1) | λ∗(t − 2) · λ∗(t − 1)λ∗(t). Thus
(t+ 3)(t+ 2)(t+ 1)t! | λ(1) ·λ(2) · · ·λ(t) ·λ∗(t− 2) ·λ∗(t− 1)λ∗(t) and therefore
(t+ 3)(t+ 2)(t+ 1)t! | `(t). Hence

(
t+2+N ·`(t)

t+3

)
/N is an integer for all N ≥ 2.

• Assume that (t+2) is prime. Then (t+3) is composite. Let (t+3) = A ·B with
2 ≤ A,B ≤ t−2. Since (t+2) is prime, we have (t+2) - N by Theorem 4.1, and
(t+2) | (t+1+N ·`(t))(t+N ·`(t)) · · · (1+N ·`(t)). Since (t+3)(t+1) = A·B·(t+1),
we have A ·B · (t+ 1) | λ∗(t−2) ·λ∗(t−1)λ∗(t). This implies that

(
t+2+N ·`(t)

t+3

)
/N

is an integer.

• Assume that (t + 3) is prime. Then (t + 2) is composite. If (t + 3) | N , then
(t + 3) - (t + 2 + N · `(t))(t + 1 + N · `(t))(t + N · `(t)) · · · (1 + N · `(t)); so
(t+ 3)(t+ 2)(t+ 1)!N - N`(t), and therefore

(
t+2+N ·`(t)

t+3

)
/N is not an integer. If

(t+3) - N , then (t+3) | (t+2+N ·`(t))(t+1+N ·`(t))(t+N ·`(t)) · · · (1+N ·`(t));
since (t + 2)(t + 1) = a · b · (t + 1), and a · b · (t + 1) | λ∗(t− 1)λ∗(t), it follows
that

(
t+2+N ·`(t)

t+3

)
/N is an integer.

The result is stated in the following theorem.

Theorem 4.5 For every natural number t with t ≥ 2 let λ(t) = lcm(
(
t
m

)
| m =

1, 2, . . . , t), λ∗(t) = lcm(1, 2, . . . , t+ 1) and `(t) =
∏t

i=1 λ(i) · λ∗(i). Then

(i) if (t+3) and (t+2) are composite, there exists an LS[N ](t, t+3, t+2+N ·`(t))
for every N ≥ 2,
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(ii) if (t+ 2) is prime, there exists an LS[N ](t, t+ 3, t+ 2 +N · `(t)) for any N ≥ 2
with (t+ 2) - N,

(iii) if (t+ 3) is prime, there exists an LS[N ](t, t+ 3, t+ 2 +N · `(t)) for any N ≥ 2
with (t+ 3) - N .

Remark 4.1 The most celebrated theorem of Teirlinck is given in [31] stating that for
given natural numbers t and v with v ≡ t( mod (t+1)!(2t+1)), v ≥ t+1, there is a large
set of t-(v, t+ 1, (t+ 1)!(2t+1)) designs. This is the first theorem proving the existence
of non-trivial simple t-designs for all t. However, the values for v and λ are extremely
large even for relatively small values of t. In [32], Teirlinck proves a much better result
with drastically reduced values for λ, namely, there exists a large set of t-(v, t+1, `(t))
designs with v ≡ t( mod `(t)), as given above. To illustrate it, take for example t = 5.
Then (t + 1)!(2t+1) = (5 + 1)!11 = 26, 956, 124, 946, 896, 309, 452, 800, 000, 000, 000,
whereas `(5) = 373, 248, 000.

We consider another infinite series of LS[N ](4, 5, 4+20N) such that gcd(N, 30) = 1
[32, 12]. Observe that the parameters of the 4-designs in these large sets are 4-(4 +
20N, 5, 20), where 20 = λmin(4, 5, 4 + 20N). So, LS[N ](4, 5, 4 + 20N) = LS20(4, 5, 4 +
20N). Now given an LS[N ](4, 5, 4 + 20N) it is straightforward to check that N |(
5+20N

6

)
. Hence, by Corollary 3.2 there is an LS[N ](4, 6, 5 + 20N). Furthermore,

when applying Corollary 3.2 to an LS[N ](4, 6, 5 + 20N) again, we can show that
there is an LS[N ](4, 7, 6 + 20N), if in addition 7 - N . Its proof is straightforward and
will be omitted.

Similarly, consider the large sets LS60(4, 5, 4 + 60N) = LS[N ](4, 5, 4 + 60N) for
all positive integers N with gcd(N, 60) = 1 or 2, which are given in [32]. By applying
Corollary 3.2 to these large sets, it is straightforward to verify that N |

(
5+60N

6

)
. There-

fore it gives LS[N ](4, 6, 5 + 60N). When applying Corollary 3.2 to an LS[N ](4, 6, 5 +
60N) anew, we find that there is an LS[N ](4, 7, 6 + 60N), if in addition 7 - N.

We obtain the following result.

Theorem 4.6 The following holds

(i) there is an LS[N ](4, 6, 5 + 20N) for any N with gcd(N, 30) = 1,

(ii) there is an LS[N ](4, 7, 6 + 20N) for any N with gcd(N, 210) = 1,

(iii) there is an LS[N ](4, 6, 5 + 60N) for any N with gcd(N, 60) = 1 or 2,

(iv) there is an LS[N ](4, 7, 6 + 60N) for any N with gcd(N, 60) = 1 or 2 and 7 - N.

5 Conclusion

The paper introduces new recursive constructions for t-designs, s-resolvable t-designs
including large sets of t-designs. The conditions required for the constructions are
simply the necessary divisibility conditions for the considered designs, and the results
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turn out to be very effective. In particular, they reveal a remarkable link between the
‘starting’ and ‘resulting’ designs and appear to be significant to t-design theory. A
full application of the results would certainly improve the number of known t-designs,
s-resolvable t-designs and large sets of t-designs considerably.

The author has no conflict of interest to declare that is relevant to the content of this article.
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