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Figure 1: (a) Setup of the experiment of Franck and Hertz (schematically) with
cathode K, grid-shaped anode A, counter electrode S, counter voltage US (b)
measuring results for IS(UA), the locations of the minima and maxima di�er in
each case by a constant voltage di�erence of about 4.9 V.

Figure 1a shows the setup used by Franck and Hertz schematically: In an evacu-
ated glass bulb, �lled with one mercury drop, a Hg-steam pressure of some mbar
is generated by external heating of a temperature of 150 ◦C to 200 ◦C. The bulb
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1  Basics

According  to  the  Rutherford  model,  an  atom  consists  of  a  positively  charged
core  and  negatively  charged  electrons,  which  orbit  the  core.  The  nucleus  is
very  small  compared  to  the  size  of  the  atom,  but  it  contains  almost  the  entire
atomic  mass.  Since  atoms  themselves  are  not  electrically  charged,  the  positive
charge  of  the  nucleus  is  compensated  completely  by  the  negative  charge  of  the
electrons.  The  predictions  of  this  model  regarding  the  core  were  validated  by
scattering  experiments  with  α-particles  on  metal  foil.  But  the  model  could  not
explain  the  stability  of  atoms  or  the  nature  of  the  light  emission  (the  occurrence
of  line/discrete  spectra).  According  to  the  laws  of  the  classical  electrodynamics,
the  (by  coulomb-interaction  between  core  and  shell  of  the  atom)  accelerated
electrons  should  emit  continuous  radiation  and  collapse  into  the  core  due  to
their  energy  loss.
  Bohr  postulated,  that  electrons  can  orbit  the  core  on  trajectories  of  certain
energies  (shells)  without  radiating.  During  the  transition  of  an  electron  between
shells,  electromagnetic  radiation  (light)  is  emitted  or  absorbed.  The  energy  of
the  emitted  photons  (what�s  this?)  is  hν,  where  ν  is  the  frequency  of  the
electromagnetic  radiation.  This  energy  corresponds  to  the  energy  di�erence
between  the  shells,  namely

∆E  =  hν.  (1)

The  electron  collision  experiments,  realized  by  Franck  and  Hertz  in  1913,  were  a
direct  experimental  con�rmation  of  this  quantum  theory  of  the  electron.  They
have  shown,  that  atoms  can  get  energetically  excited  by  collisions  with  (free)
electrons.  The  kinetic  energy  of  the  electron  is  transferred  to  the  atom  in  energy
quantums  ∆E,  which  correspond  to  the  characteristic  excitation  energy.
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contains the electrodes K, A and S, to produce1 free electrons and for the de-
termination of the energy transfer by collisions with Hg-atoms. Electrons are
released from the heated cathode K due to its thermal energy and accelerated
by the voltage UA towards the grid-shaped anode A.

The electrons collide with the Hg-atoms while traveling to the grid-shaped
anode A (the mean free path of the electrons between two collisions in accor-
dance with the Hg-steam pressure is about some µm). A part of the electrons is
directly conducted to the anode grid. The other part of the electrons is braked
due to a opposing �eld caused by the voltage US on its way to the counter elec-
trode S, that lies behind anode A. Thus only electrons with a su�cient large
kinetic energy can reach the electrode S. Figure 1b shows the current IS to
the counter electrode plotted versus the acceleration voltage UA with a brake
voltage US = 1.2 V. If the voltage UA is increased continuously from zero, the
current IS for UA > US will increase monotonously at �rst in accordance with
the Hg-steam pressure and corresponding to the tube-like characteristics of the

diode in the space-charge region (IS ≈ U
3/2
A ). After an exceedance of a certain

threshold voltage UA1 the current IS decreases and passes minima and maxima,
whose locations di�er in each case by a constant voltage di�erence of approxi-
mately 4.9 V, while UA rises further. This behavior is explained by the type of
the collisions, that the electrons su�er on the way between cathode and anode
by the Hg-atoms. For voltages UA < UA1 all collisions are elastic, thus prac-
tically no kinetic energy is transferred because of the quite di�erent masses of
the particles brought to collision (mHg/me = 3.7 × 105).

The kinetic energy of the electrons, that pass the anode, is nearly equal for
all electrons

E = e(UA − UK).

Where e is the elementary charge and UK the contact voltage between cath-
ode and anode (eUK = di�erence of the electronic work function from these
electrodes).

For voltages UA −UK > UA1 −UK = U1 = 4.9 V inelastic collisions between
electrons and Hg-atoms happen, too. Whereby the electrons emit the energy
eU1, that corresponds to the Hg-excitation energy between the ground state 61S0

and the resonance level 62P1. After an inelastic collision for acceleration voltages
bigger than UA1, the electrons does not possess enough energy to overcome
the opposing �eld between anode and counter electrode. This leads to the
decrease of the current IS, compare Fig. 1b. If the voltage UA is growing
further, the current IS rises again, since the kinetic energy of the electrons for
passing the opposing �eld is rising according to the increasing voltage. When
the acceleration voltage UA minus the contact voltage UK reaches the n-fold of
the excitation voltage U1, n inelastic collisions between the electrons and the
Hg-atoms happen on average. This results in the occurrence of further maxima
in the current IS.
Remark: With a di�erent experimental arrangement of the Franck-Hertz-
Experiment, �g. 1a, it is possible to determine other excitation energies of
mercury and other atoms.

1Beware! Electrons cannot be produced (charge conservation)! But electrons can be re-
leased from a material, thus free electrons are produced.
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The relaxation to the ground state of the Hg-atoms after the excitation
caused by collisions is in the present experiment observed by the, as a result of
the process, occurring light emission (at the anode, see 3 experimental setup).
The direct transition (λ = 254 nm), according to the energy 4.9 eV,though can't
be observed, since the wavelength is small.

2 Assignment of tasks

2.1 First task

The IS(UA)�characteristic curves of a Franck-Hertz-tube at two di�erent tem-
peratures have to be recorded by a x-y plotter:

(a) at T1 = approx. 175 ◦C for UA = 0 V to 30 V and US = 0.5 V, 1.0 V, 1.5 V
and 2 V
(b) at T2 = approx. 200 ◦C for UA = 0 V to 60 V and US = 2 V.

2.2 Second task

The results should be evaluated graphically and discussed afterwards. Deter-
mine the excitation voltage U1 at the location of the maxima of the characteristic
curves and compare it to the literature values. Discuss possible errors in the
measurement.

3 Experimental setup

Figure 2 shows the circuit diagram of the present experiment. The Franck-
Hertz-tube is covered by a housing with observation-windows at the side and
back wall. The housing is heated by an electrical driven oven, that is connected
to the AC grid (220 V) by a bimetal switch (T) and a var. autotransformer
STr. Thus constant temperatures can be set in a wide range. A thermometer
serves for the measurement of the temperature. The source for the acceleration
voltage UA, the counter voltage US and the cathode heating voltage (6.3 V) is
a tube-power supply with a special control gear (shown in �g. 2 on the left
beside the tube): The 0 V to 12 V output of the power supply is (gear) reduced
with the potentiometer 10 kΩ/3.3 kΩ in proportion 4:1 for the generation of the
counter voltage US (0 V to 3 V). The voltage output 0 V to 60 V (respectively
30 V) generates a temporally increasing voltage UA(t) (charging voltage of the
capacitor) when the switch S1 is opened through the potentiometer 10 kΩ/2200 µF.
The voltage UA(t) is determined by a voltmeter and is attached to the x input
of the plotter for recording the characteristic curves.

The current IS of the tube (about 10−9 A to 10−8 A) will be measured by a
DC measurement ampli�er. Its output U(IS) (approx. 1 V) is connected to the
y input of the plotter.

4 Experimentation

At �rst the Franck-Hertz tube must be heated. For this purpose the tube is
driven by a turned on cathode heating and a var. autotransformer STr set to
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Figure 2: Circuit diagram of the Franck-Hertz experiment, with the potentiome-
ter, the switch S1, a voltmeter UA on the left, the Franck-Hertz tube (elektrodes
S, A and K) and a thermometer Th on the rigth, a x-y plotter on the top and
a cathode heating (Heizung) with a var. autotransformer STr on the bottom.

approx. 200 V. The bimetal thermostat on the side wall of the oven is set to
approx. 175 ◦C. When the tube reaches a temperature of approx. 160 ◦C, the
transformer is set back to 140 V. If necessary the bimetal thermostat is set
to the desired temperature. The remaining setup is connected in accordance
with the circuit diagram, �g. 2. The mass connections of the ampli�er and
the housing also need to be connected. Before you start the recording of the
characteristic curves, become familiar with the handling of the ampli�er and
the plotter.

For recording the characteristic curves at about 175 ◦C the following settings
are necessary:

Measurement ampli�er range: 10−8 A
Plotter, y input: 0.1 V cm−1 var.: = ca. 30 mV cm−1

Plotter, x input: 1 V cm−1 cal.
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The 4 characteristic curves for all counter voltages US should be plotted together,
if possible, after a test (start and end via opening and closing of S1), into only
one diagram.
For recording the characteristic curves at about 200 ◦C the following adjustments
need to be performed:

Measurement ampli�er range: 10−9 A
Plotter, y input: 0.1 V cm−1 var.: = ca. 30 mV cm−1

Plotter, x input: 10 V cm−1 var.: = ca. 2 V cm−1

Remark: If the tube is driven at about 200 ◦C, the characteristic curve in the
range of UA < 60 V should exhibit approx. 10 maxima and minima. For smaller
temperatures, the ignition voltage for the corona discharge of the tube (what's
this?) is below 60 V. Thus a corresponding smaller range for UA needs to be
chosen. A recording of the characteristic curve during the corona discharge
is not useful for this experiment. The beginning of the corona discharge can
be recognized by a stage in the characteristic curve of the tube and by light
emission of the Hg-atoms around the cathode. At the same time it causes a rise
of the anode current. The protective resistor (directly at the anode grid, see �g.
2) limits the current and prevents the destruction of the cathode respectively
increasing its service life.

5 Evaluation

The characteristic curves need to be labeled (scale and zero points of the axes,
speci�cation of the respective brake voltage as curve parameter). The maxima
of the curves should be identi�ed/labeled and their spacings should be deter-
mined. The mean values of the spacings of the maxima, as well as the standard
deviations have to be to determined separately for both temperatures T1 and
T2. The results need to be compared to the literature value. Discuss the course
of the characteristic curves and possible errors in the measurement.

6 Questions for Self-checking

• Interpret the course of the IS(UA) characteristic curve (�g. 1b).

• Why does the current IS in the minima does not go back to zero?

• Why a counter voltage US is used?

• Which impact does the temperature of the Franck-Hertz tube have on the
current IS?

• Which kind of excitation takes place in the Hg-atom?

• Which wavelength does light, emitted by the Hg-atom after excitation
caused by collisions, have? How does one prove it?

5



- F.1 -

x 
 1
n

�
n

i 
 1
xi . (1)

Appendix: Analysis of Errors

1. Systematic and Statistical Errors

Every result of a measured ph ysical quantity inevitably contains an error. To
evaluate the experimental result obtained, it i s, therefore, necessary to give an
estimate of the numerical error(s) inherent to the experimental quantity.

There are different kinds of errors: systematic and random, i.e., statistical.
Systematic errors are caused by the measurement system and can be recognized
from the fact that the measured numerical value is strictly too large or too small as
compared to those obtained when using other methods of measurement or theory.
To minimize systematical errors, one has to change the experimental setup, i.e., the
apparatus or the measuring procedure. Alternatively, the numerical result has to be
corrected p roperly to account for the systematic e rrors involved in the
measurement.

A statistical error arises due to random postive and negative deviations of the
actually measured value from the mean or precise experimental value. If, e.g., the
measured length o f a distance is not exactly that of a ce rtain number of scale
divisions, on e has to estimate a more a ccurate value by interpolation, thus a
statistical error may result. On the other hand, the displayed (analog or digital)
value of, e.g., a measured voltage can  vary with time, i.e., fluctuating around an
unknown (average) value. Thus, by evaluation of a time averaged value, or by the
choice of the measurement moment, a statistical error may arise as well. Statistical
errors are c haracterized b y a probability distribution, which d etermines the
probability of a measured deviation from the precise (true), i.e., most probable
value (expectation value). The more a measurement is repeated, the more precisely
are the probability distribution and the most probable value determined and the
less becomes the statistical (measuring) uncertainty (see below).

2. Average Value, Standard Deviation, Statistical Uncertainty

The best evaluation for the most probable value of a measured quantity x out of n
different single measurements xi is obtained b y taking the arithmetic average
value ̄x
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n
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n 	 1
, n > 1 . (3)
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�x 2 	 1

n
(�x)2

n 	 1
, n > 1 , (4)

Very o ften a shortened no tation is used in the literature c ontaining statistical
equations with expressions of sums, where the lower and upper summation limit
and the summation index is suppressed:

This shortened notation will be used in the following text. 

Once the average value is known, the moduli of differences xi - x̄, denoting the
deviations of single measuring results from the average value, give some estimate
for the precision of the measurements. Because of numerical reasons, the moduli
of the differences are replaced by the squares (xi - x̄)2 and the standard deviation
s is defined by

The standard deviation gives the statistical average error of a single measurement.
By introducing the (positive) square root, the quantity s has the same units as the
measured quantity and is therefore comparable with it. The division by  n - 1
instead by n takes into account, that for only a single measurement (n = 1) no
statistical statement can be given, i.e., s is not defined.

The equation defining the standard deviation is usually not that given by eq. (3).
All pocket calculators use instead the fully equivalent equation

because, when using eq. (4), not the single measured values x, but only the sum
� x and the sum of the square � x2 has to be stored.

Besides the calculation of the average value and the standard deviation, it is often
interesting to consider the value of the statistical uncertainty of the average value
as well. This is because x̄ is just a guess of the result x according eq.  (2), which
for a small number n o f single measurements, can b e very unprecise. The
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n(n 	 1)
, n > 1 . (5)

Q (x) 
 1
1 2�

exp 	 (x 	 x0 )2

212
. (6)

P(x1,x2) 
 ,
x2

x1

Q (x)dx , (7)

statistical measuring uncertainty u is a measure of the (statistical average) error of
the average value x̄:

While the standard deviation s as a measure of the statistical spread o f single
measured values xi approaches a finite value > 0 with increasing n, the statistical
measuring uncertainty u of the average value x̄ decreases with increasing n and
approaches zero at large n.

Very often the measured values xi are so called "normally" distributed, i.e., their
relative probabilities are given by the Gaussian distribution function Q(x):

The integral

gives the probability that the values xi (for a large number of measurements n � �)
lie within the interval (x1, x2). As shown by Fig. 1, the function Q(x) is symmetric
around the most probable value x0 (the expectation value) and has the shape of a
bell with a full width at half maximum of somewhat more than 21.

For very large n, the a verage value x̄ d etermined from the measuring series
approaches the value x0 o f the function Q(x), and the standard d eviation s
approaches the value 1. The probability that the result xi of a single measurement
lies within the interval x̄ ±s, i.e., x0 ± 1, amounts according to eq. (7) to about
68 %, for the interval x0 ± 21 to about 95 % and for x0 ± 31 already 99.7 %.
Similar relations are valid for the statistical measuring uncertainty u of the average
value: the probability of the true value x0 lying within the so called (unit) range of
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Fig. 1: Gaussian distribution function Q(x) with most probable value
x0 and intervals x0 ± 1, x 0 ± 21, and x 0 ± 31 for r elative
frequencies 68%,  95%, and 99,7% of measuring value xi

n� 
 2dsin�n ,

confidence ̄x± u is about 68 %, for the twofold and threefold range of confidence ̄x
± 2u and  x̄ ± 3u about 95 % and 99.7 %, respectively.

One has to take into consideration, however, that the evaluation of the statistical
measuring un certainty or the range of statistical confidence for the value x̄ is
physically reasonable only in combination with the e valuation o f possible
systematic errors. The total error of a result obtained from a measurement i s
always the sum of moduli for systematic and statistical errors. It is, therefore, not
useful to repeat a measurement very often just for minimizing the statistical error
if the evaluated systematic error exceeds the former by orders of magnitude.

Example 1: In the experiment B10 (experiment with x-rays) the lattice constant d
of NaCl is to be determined from the Bragg reflection using Bragg's law

with the wavelength �  = 154 pm and the measured Bragg angles �n (n = 1, 2, 3).

Typical values are given in the table below.
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n �n (°) dn (pm)

1 16.0 279.4 

2 33.2 281.3 

3 55.15 281.5 

Using these values the following are found:

the average value: d = 280.73 pm,

the standard deviation: s = 1.16 pm,

the statistical uncertainty u of the average value d , u= 0.67 pm,

Finally,    

d = (280.73 ± 0.67) pm = 280.73 pm ± 0.2 % ,

if no error ( statistical or systematic) in the measured angles �n is considered.
(Otherwise see example 2 below!)

Notice: Any estimated error should no t contain more than 2 o r 3 d ecimal
positions. The final result is to be rounded correspondingly. Very often it does not
make any sense and only simulates precision to present the many decimal places
displayed by a pocket calculator.

Additional notice: Comparison of the result for d given above with the value dNaCl
= 282.0 p m, known from the literature, and with those obtained u sing other
experimental setups in the laboratory, reveals a systematic deviation o f �n (of
roughly 0.5% - depending on the system used - because of inaccurate
adjustments). In this case, the value of the statistical uncertainty presented is not
significant at all to estimate the (actual true) error of d. If u is replaced by the
standard deviation s, the result   

d = (280.73 ± 1.16) pm = 280.73 pm ± 0.4 %

can account to a better extent the actual error but this presentation does not solve
the p roblem principally, i.e., ho w the systematic e rror present in this case is
properly taken into account. One possibility to solve the problem is to take into
consideration that an inherent (constant) systematic e rror û�s (because of
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misalignment of both the crystal and the detector) has to be taken into account
when using Bragg's law for the evaluation of � from the experimental data, i.e.,
� = �m + û�s, where �m is the measured value. Since in the experiment considered
the task is not to validate Bragg's law but to determine the lattice constant d, we
state that Bragg's law is valid in any order n, i.e., that the value of d is independent
of n. Combining Bragg's law, e.g., for n = 1 and 2, û�s can be calculated with the
values in the table of example 1 from

Using this systematic correction û�s of the angle �m, the values d1 = 282.8 pm; d2
= 282.8 pm (i.e., d1 = d2) and d3 = 282.2 pm are obtained. Thus, the average of the
corrected result for d is 

d = 282.6 pm ,

which is closer to the value dNaCl = 282.0 pm known from the literature than the
value d = 280.73 p m presented above, without t aking into consideration the
correction of the systematic error.

3. Propagation of Errors

Generally, the determination of a physical quantity y requires the measurement of
several single (different) parameters x1, x2, ... In this context, the question arises
how far the single errors ûxi resulting from the measurement of the individual
parameters determine the uncertainty ûy of the quantity y. If the errors ûxi are
small as comparted to xi, the function y expanded into a power series of  the errors
ûxi  around the values xi is approximately given by the terms linear in ûxi . The
error ûy resulting, e.g., from a single error ûxi is given by

To estimate the largest possible absolute error (ûy)max by taking into account all
possible single errors ûxi, the following relation is defined:
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Example 2: In the experiment B10 (experiment with x-rays, see also example 1)
the lattice constant d of NaCl is to be determined from the Bragg reflection using
the relationship

with the wavelength �  = 154 pm and the measured Bragg angles �n (n = 1, 2, 3).
Assuming a statistical error û� = ± 0.25° = 0.0044 of every measured angle �n, the
maximum statistical error ûdmax is according to eq. (9)

Taking the numerical �-values presented in example 1 we obtain

(ûd)max = 0.112 ( 12.65 + 5.58 + 2.55 ) pm = 2.33 pm;    (ûd)max / d = 0.83 %

It is noted that the error contribution from the first Bragg angle �1 is the largest
one, because the error û�1/�1 is the largest one, consistent with the observation in
the table of example 1, where the deviation of (d1 - dNaCl ) is the largest one too.

Example 3: In the experiment B8 (determination of the specific charge e/m of the
electron) the ratio e/m is determined from m easurements of the acc eleration
voltage U and of the current I through the coils with radius R for an electron beam
with circular radius r.
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 1
e/m 

0(e/m)
0R

ûR�0(e/m)
0U

ûU�0(e/m)
0r

ûr�0(e/m)
0I

ûI


2ûR
R �

ûU
U�

2ûr
r �

2ûI
I .

(10)

û(e/m)
(e/m) max


 0.02 � 0.03 � 0.034 � 0.09 
 0.174 .

y 
 a � bx . (11)

Since e/m is a product of powers of the variables R, U, r, and I, the expression of
the largest possible relative error of e/m is rather simple. Taking into account the
errors ûR, ûU, ûr, and ûI, the largest possible relative error of e/m is given by

Typical estimates of errors and values of measured quantities are

ûR = ± 2 mm R = 20 cm ûR/R = 0.01
ûU = ± 6 V U = 200 V ûU/U = 0.03
ûr = ± 0.5 mm r = 3 cm ûr/r = 0.017
ûI = ± 90 mA I = 2 A ûI/I = 0.045 

resulting in

4.  Graphs and Linear Regression

In experimental physics, the a im is often to validate a theoretically predicted
functional dependence of two quantities x and y by a measurement. In simple
cases, the quantities x and y are linearily connected, i.e.,

Since every measurement is inherent with an error, the data (xi , yi) in a graph yi vs.
xi will scatter more or less around a straight line drawn through the data points. It
is the task to find an optimum straight line balancing the deviations due to errors
(i.e. that line which would represent the data if the errors were absent). This is the
regression line. It can be simply done by a visual estimate, i.e., by drawing a
suitable straight line with a ruler. A more objective way to construct the regression
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line is the least mean square fit; the calculation of the parameters a and b of eq.
(11) (a: intercept on y-axis, b: slope of line) with the condition

being an absolute minimum. If this is the case, a and b fulfil the condition

Differentation yields the equation system

with the solution

Note: For a regression line through the origin of the coordinate system, i.e. for the
line y = b x  (a = 0) the corresponding solution is

The linear r egression algorithm using the method o f the least mean squares is
almost always applied to find an op timum fit to the data. It i s (besides the
(arithmetic average) the most frequently used algorithm and, therefore, is included
in many pocket calculators.

When using the (critical) regression coefficient R2, one has to be cautious. With R2

the qu ality of f it functions with several i ndependent measuring series can b e
compared. The coefficient of a single measuring series, however, has no physical
meaning.

In cases where the quantity Y(X) does not li nearly depend on X, it may be
possible to find a proper transformation Y(X) � y(x) so that a linear relationship
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y = a + bx holds.

Some examples are given in the following table:

function
Y(X)

transformation y = a + b x

y(X,Y) x(X,Y) a b

A XB ln (Y) ln (X) ln (A) B

A exp (BX) ln (Y) X ln (A) B

A X + B X3 Y / X X2 A B
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