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Fig. 1:

X-ray tube
(schematic)

Exp. B 10: Experiment with X-Rays

1.   Literature
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2.   Basics

2.1 Continous X-Ray Spectrum

X-rays can be generated using an (evacuated) x-ray tube (see schematic view in
Fig. 1). Free electrons are generated by thermionic emission from a hot cathode C,
focussed with the aid of a Wehnelt cylinder W and accelerated towards an anode
A by a high anode voltage UA. 
When the e lectrons reach the anode, most of them gradually lose their kinetic

energy (½ mv2 = eUA) during many collisions with the atoms of the anode material
(eg. Tungsten or Copper) due to the Coulomb interaction (what is this?). The main
part of their kinetic energy is converted simply into heat (i.e. atomic vibrational
energy o f the a node material), the remaining (smaller) part i s converted into
electromagnetic radiation. Among the latter, x -rays are generated within a
continous spectrum, the so called Bremsstrahlung  ("white x-ray light"), first
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Fig. 2: a) continuous, b) continuous and characteristic 
x-ray spectrum (schematic)
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discovered by W. Röntgen (1895).

Fig. 2 a shows the intensity of continueous x-ray spectrum vs. wavelength for
various accelerating voltages. The spectral intensity is independent of the anode
material and exhibits a short wave length cutoff �min, where the intensity drops to
zero. At the cutoff wavelength �min, depending only on the accelerating voltage UA,
the  kinetic energy of an electron is converted into radiation energy within a single
process according to the following relation

This means that the maximum frequency �max or the minimum wave length �min =
c/�max o f the c ontinous x-ray spectrum for a ce rtain voltage UA are solely
determined by the charge of the electron e and Planck's constant h.

For many technical purposes, as in the present experiment, the acce leration
voltages UA are in the range 20 to 50 kV; thus the wave lengths are (according eq.
1) in the range of less than 1 Å (= 10-10 m = 0.1 nm = 100 pm).
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Fig. 3: term scheme with electronic transistions of the atom,
left: at emission, right: at absorption of x-rays 

2.2  Characteristic Spectrum

The x-ray spectrum observed often exhibits in addition to the continous spectrum
shown in fig. 2a very high intensities at certain discrete wave lengths, which are
characteristic for the atoms of the anode material (see eg. fig. 2b). These spectral
lines are caused by energetic transitions of electrons across the different energetic
states within the atoms of the anode material.

The physical origin of the characteristic x-ray spectrum  is easily explained with
the aid of Bohr's model of the atom (compare with Fig. 3). At the impact of the

accelerated electron with an atom of the anode material, another electron, e.g.,
from the (energetically lowest, inner) K-shell, is removed and struck into the high
energy continuum of the metal.The remaining hole in the K-shell is filled up by an
electron from, e.g., the (energetically next higher) L-shell. At this transition, a
certain amount of energy ûE corresponding to the energy diffrence between the L-
and the K-shell i s released and emitted as electromagnetic radiation with the
energy quantum  ûE = h � = hc/�  (x-ray photon). At the transition from, e.g., L to
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K, the so called K. x-ray line appears in the spectrum.

Transitions from the M-shell t o the K-shell generate the K� line, similarly the
transitions from M to L generate the L. line, etc. The characteristic spectrum is
thus generated according to the energy levels of the atoms of the anode material.
Both frequency or wavelength of these x-ray lines depend on the square of the
atomic number Z of the considered element. For the K. line the eq.

holds with the Rydberg frequency Ry = 3.29 . 1015 s-1. The screening constant 1
accounts for the screening of the charge +Ze of the nucleus by the remaining K-
shell electron.

2.3  Absorption Spectrum

The weakening of x-rays in material i s caused, first, b y classical (elastic)
scattering (changing the photon's momentum without changing its energy),
second, by Compton scattering (partial transfer of photon energy to free or weakly
bound electrons), and, third, by absorption. The capability of matter to absorb x-
rays is described by the coefficient of absorption 2A. It strongly depends on the
atomic number Z (number of atomic electrons) and on the wavelength � of the
radiation (2A � Z4�3). At the absorption o f x-rays, the whole photon energy is
transfered to inner shell electrons being excited into higher energy states. From
Fig. 3, it is evident that at the absorption of x-rays, no characteristic absorption
lines - like the emission lines - can be observed. Otherwise, this would mean that,
e.g., for the K. line the e xcitation o f one K-electron to the L-shell would b e
necessary. This s hell and the other shells, M, N etc., are usually occupied.
Therefore, only the excitation into states with E�Ei (ionization energy), into the so
called continuum is possible, and an absorption spectrum, as shown schematically
in Fig. 4, is observed. Besides the increase of 2A � �3, the spectrum exhibits  K, L,
M, .. absorption edges (corresponding the e xcitation energies of K, L, M,
..electrons) at certain wavelengths � - characteristic for the absorbing material. The
corresponding frequencies, e.g., �K for K-electron excitation, depend on the atomic
number of the absorbing element similar to that given by eq. (2)
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Fig. 4: X-ray absorption spectrum (schematic)

Fig. 5: Geiger-Müller tube

A suitable c ombination o f anode material (in the present experiment copper,
Z=29) and absorbing filter material (here nickel, Z=28) placed into the emitted
x-ray beam, allows to ob tain an x -ray emission spectrum (continuous and
characteristic Cu spectrum), which is weakened very much at short wavelengths so
that essentially only the Cu K. line remains, i.e., monochromatic x-rays with �K. =
1.54 Å = 154 pm.

2.4  Detection of X-Rays

X-rays can be detected through the use of their ionizing effect. The intensity of the
radiation can be measured, e.g., by measurement of the current pulses through
ionization chambers or counting tubes, or by the determination of the blackening
of photo plates. The functioning of a simple counting tube, the Geiger-Müller-tube
(used in the present experiment), is illustrated schematically in Fig. 5:
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Fig. 6: Bragg reflection at a single crystal

The tube consisting of a metal housing with a thin foil at one end is filled with
inert gas (e.g. Argon) and some a dditional alcohol vapor. A thin steel wire
(insulated from the housing) is streched along the center of the tube and connected
through a resistor R (>1M
) to ground. The housing is negatively charged against
the center wire by a high voltage, U�500V. If the x-rays traverse the tube, they
ionize single gas atoms, and the electrons are accelerated toward the center wire
causing more ionization on their way resulting finally into a complete discharge of
the tube (limited in time by the alcohol vapor). The discharge current across the
resistor generates a voltage pulse at P which is counted.

2.5  Bragg Reflection of X-Rays

The wave nature of x-rays was first established in 1906 by Barkla, who was able
to exhibit their polarization. In 1912 a method was devised to actually measure the
wavelengths. Max v. Laue recognized that the wavelengths hypothesized for x-
rays were about on the same order of magnitude as the spacing between adjacent
atoms in crystals. He, therefore, used crystals to diffract x-rays with their regular
lattices acting as a kind of a three dimensional grating.  The diffraction of x-rays
in crystals and their subsequent interference, characteristic for their wave nature,
results in a diffraction pattern dependent on the x-ray wavelength and the spacing
between the a toms. The regular arrays of atoms in crystals (in the present
experiment NaCl, Sodium chloride with simple cubic symmetry) "reflect" x-rays
with a single wavelength � only at certain angles. Since the radiation penetrates the
crystals, the "reflection" occurs at many atomic planes (selected families of atomic
arrays) and actually depends on the distance d between the planes.



- B10.7 -

n� 
 2dsin�n (Bragg�s Law) . (4)

This is illustrated schematically in Fig. 6. A monochromatic beam falls onto the
parallel p lanes of atoms (separated b y distance d) with the a ngle � and is
"reflected" at the same angle. Constructive interference of the reflected beam, i.e.,
the so called Bragg reflection, only takes place if the path difference between x-
rays reflected at adjacent planes is �, 2�, 3�.., i.e., n�, where n is an integer.
According to the geometric situation scetched in Fig. 6, the condition for Bragg
reflection is simply

 
 

 
  

 

 
  
 

 

 
 

  

The  "reflection"  of  radiation  at  atoms  is  actually  a  scattering  and  an  interference
process.  The electronic  shells  (-Ze)  of  every  atom  of  the crystal  subjected  to  the
field  of  the electromagnetic  radiation  are  forced  to  vibrate around  the  nuclei  (+Ze)
and  thereby  emit  radiation  with  the  same  frequency  as  the  incoming  radiation  in
almost  all  directions.  This  radiation  is  intensified by  constructive  interference at
angles  given  according  eq.  (4)  and  annihilated  at  other  angles.  Since  the
interference  maxima,  if  plotted  vs.  reflection  angle,  are  very  sharp, one  gets  the
impression  that the  radiation  is  reflected  at  certain  angles  �1,  �2,  etc.

Using  Bragg's  law  one  can determine  the  spacing  d of  an unknown  lattice  if  the
wavelength  �  of  the  monochromatic  x-ray  beam  is  known, or  vice  versa  �,  if  the

lattice  spacing  d of  the crystal is  known.  The  first  condition  is  important  for  the
determination  of  unknown  crystal  structures.  Generally,  the application of  x-rays
is  of  high  technological importance  in  studying  materials.



1. Assignment of tasks 
  
1.Task:     With the X-ray machine, the intensity (pulse rate R of the Geiger Müller 

counter tube) of x-rays reflected on a LiF single crystal has to be 
determined depending on the refraction angle 𝜃 for five different anode 
voltages UAS . The refraction angle has to be transformed into the 
wavelength 𝜆 by bragg´s law taking into account the lattice distance of the 
Li F crystal (dLiF = 201.4 pm).  

From the curves R(𝜆), the short-wave limit 𝜆min of the X-ray spectrum has 
to be determined graphically. With these values and the linear equation:  

e UAS  = h*fmax  

the Planck constant h should be derived from the slope of the plotted 
equation. 

2.Task:    With the X-ray machine (Mo-Anode and included  Zr-filter: 𝜆Ka= 71.1 pm) 
the Bragg angles have to be determined for a NaCl single crystal.  

Calculate the lattice distance d of NaCl and compare it with the literature 
value dNaCl = 282.5 pm. 

  



2. Experimental set-up 

 

Fig. 2.1: 

X-ray machine with X-ray tube (R), experimental 
chamber (E), aperture (B), crystal (K), counting tube (Z), 
pointer 1 (Z1), pointer 2 (Z2), motor drive (M)  

 
Fig. 2.1 shows the X-ray machine used in the experiment, Fig. 2.2 shows the entire 
experimental setup schematically. The X-ray radiation generated by the Molybdenum X-ray 
tube enters the experimental chamber through an aperture (collimator) into which a filter 
(e.g.  Zr-film) can be inserted. The filtered X-ray hit the crystal (LiF or NaCl), which is 
attached to a vertical axis that rotates to the beam direction. The angular position 𝜃 of the 
crystal surface (=crystal planes) to the incident X-ray beam is indicated with a pointer Z1 on 
an angular scale. Around the same axis of rotation, the counting tube for the intensity 
measurement of the reflected X-ray radiation can be rotated, whose angular position 2𝜃 to 
the incident X-ray beam is indicated with a second longer pointer Z2.  

Both angle positions are adjustable. Via a mechanical coupling it is ensured: when adjusting 
one the other is tracked accordingly. At the position 2𝜃 = 𝜃 = 0, both pointer Z1 and Z2 are 
on top of each other. Note that in this position there is no reflection of the crystal and the 
direct Xray beam hits partially directly onto the Geiger-Müller counter which should be 
avoided during experiment. Therefore all experiments will start with a minimum angle of 
𝜃 = 3°. Note! The motor drive is powered by a 12 V voltage source. 

According to the angular position of the motor, a voltage in the range +3V is picked up at a 
potentiometer, which is connected to the motor axis by means of a slip clutch, which is 
located at the input C of the interface.  

The pulse rate R of the Geiger-Müller-counter (proportional of the radiation intensity) is 
registered via the input F of this interface, so that an automatic recording of the counting 
rate R(𝜃) or R(𝜆) (at known network plane distance using the Bragg equation) is possible. 



  

 

The use of a computer also makes it possible to immediately graphically display and assess 
the rate R(𝜃) during the measurement on the monitor.  

In addition, it should be noted that the emission current of the X-ray tube remains constant 
during the measurement (approx. 1 mA). This is controlled with a DC meter. An AC volt 
meter is used to determine the gradually adjustable (1,…,8) anode voltage UA. This is 
determined by the measured effective value of the AC voltage U over the relationship  

𝑈! = √2 × 10"𝑈 
 

To shield the environment from the X-ray radiation of the tube, the X-ray tube itself and the 
experimental chamber are enclosed by steel plates and lead glass windows. The lateral 
window can only be opened when the anode voltage is switched off, e.g. for mounting the 
crystal. The operation of the X-ray tube (switched on anode voltage) is indicated by a red 
warning lamp on the top of the device. 



3. Experimentation and evaluation 
 
3.1 Start of experiment, angle calibration and angle correction 
 

 

 
   

 
   

  

	      
       

  
 

   
  

(monochromator) can be used here. The angular error ∆ for the 2nd task can be determined 
using the Bragg equation.  If 𝜃1

m  and 𝜃2
m are the measured angles for the maximum 

intensity in 1st and 2nd order, the angle correction is ∆= 𝜃# − 𝜃#$ = 𝜃% − 𝜃%$. With the 
boundary condition, that the corrected angles 𝜃1 and 𝜃2 result in the same mesh plane 
spacing for NaCl (𝑑&'() = 282.5	𝑝𝑚), one ends up with the relation to calculate ∆: 

  
  

First, the X-ray machine (initially without high voltage), the rate meter, and finally the power
supply  of the actuator must be adjusted.

In general, a calibration of the angle adjustment of the motor is necessary before the start
of the  experiment. For this purpose, the menu item  Calibration/Ranges
(Kallibrieren/Bereiche)  is  selected,  then  angle calibration  (Winkelkalibrierung),  then 
start/stop, after which the voltage U of the motor potentiometer shown on the screen is 
driven to the value of approx.  -2.95 V, which should correspond to the angular position
2𝜃  =  𝜃  =  0. A slight adjustment of the hands is  necessary  by the keys +/-/S (larger / smaller
angle / stop).  The zero position is confirmed by  F2,  i.e. the set voltage value is  assumed to
be  2𝜃  =  𝜃  =  0.

The angle 2  𝜃  =  600  is then approached with the  +/-/S  keys. The voltage now displayed in 
the  screen  corresponds to  𝜃  = 300,  which is confirmed  again  by  F2.  After that, the 
calibration is  finished and can  be exited with  ESC.

In the evaluation of the  measured angles, it must be taken into account that the spectra 
have  an  offset  of an  angle  ∆. This angular error  ∆  depends strongly on the used crystal 
surface and its position in the crystal holder  and is provided  for the 1st task, since no filter



3.1.1. 1st Task:  

 

The measurement is carried out with the LiF crystal without filter for 5 different anode 
voltages (levels 4 – 8 on the scale). The respective voltages Ueff have to be noted and the 
high voltage UA has to be calculated (see equation above) 

Before the 1st measurement: 
parameters:     
    
   
 
Measurement: start: 

 
 

After each measurement series:  

Print screen: Determine minimum angle 𝜃$*+ 
  

 
 

   	   

  

 

 

   
 

  

  
  

 
 

 

parameters:  Angle range 𝜃: 3-250, 
 Torzeit: t: 1s 
Measurement: start: F1 

  

 

         

     

 

        

         

 
   
  

   
  

   

Substract  ∆=0.7°
After all series of measurements of the 1st task:

Derive  𝜆$*+  with  Bragg´s  law  (𝜆$*+  =  2𝑑,*-sin  (𝜃$*+))  .

Calculate  𝑓$'.  =  𝑐  /  𝜆$*+

Plot the  linear equation of U*e versus h*fmax following from the energy conservation

  𝑈  ∗  𝑒  =  ℎ  ∗  𝑓$'.

Determine the Planck constant  h  from the  slope of  the  graph  using  linear regression  and 
compare to literature. Please note that your fit curve must go through (0;0) point (function 
y=kx).

3.1.2.  2nd Task:
The measurement is to be carried out with NaCl crystal and  with  Zr filter, voltage level 8  to
determine the  lattice  distance of NaCl
Before measuring:

Angle  range:  𝜃: 3-100,  step: 0.10

Torzeit:  t:  1s
dLiF  =  201.4  pm

F1



After the measurement:  

Print screen:  
Determine the peak angles for n=1,2,3   

Calculate ∆  from the first two maxima with the equation given 
above 

 

Derive dNaCl for all 3 Maxima Get an average and compare it with the literature 
value 

  
  
 
 
 

 

4. Questions for Self-checking  
 

1) How does an X-ray tube work? 

2) Which different X-ray spectra are distinguished (drawing)? 

3)  Why is there a short-wave limit of the Bremsstrahlung? 

4) What is the origin of the X-ray characteristic spectrum? 

5)   How do we prove that X-ray are electromagnetic waves? 

6)   What is Bragg's Law? 

7)   How does a counter tube work? 
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Appendix: Analysis of Errors

1. Systematic and Statistical Errors

Every result of a measured ph ysical quantity inevitably contains an error. To
evaluate the experimental result obtained, it i s, therefore, necessary to give an
estimate of the numerical error(s) inherent to the experimental quantity.

There are different kinds of errors: systematic and random, i.e., statistical.
Systematic errors are caused by the measurement system and can be recognized
from the fact that the measured numerical value is strictly too large or too small as
compared to those obtained when using other methods of measurement or theory.
To minimize systematical errors, one has to change the experimental setup, i.e., the
apparatus or the measuring procedure. Alternatively, the numerical result has to be
corrected p roperly to account for the systematic e rrors involved in the
measurement.

A statistical error arises due to random postive and negative deviations of the
actually measured value from the mean or precise experimental value. If, e.g., the
measured length o f a distance is not exactly that of a ce rtain number of scale
divisions, on e has to estimate a more a ccurate value by interpolation, thus a
statistical error may result. On the other hand, the displayed (analog or digital)
value of, e.g., a measured voltage can  vary with time, i.e., fluctuating around an
unknown (average) value. Thus, by evaluation of a time averaged value, or by the
choice of the measurement moment, a statistical error may arise as well. Statistical
errors are c haracterized b y a probability distribution, which d etermines the
probability of a measured deviation from the precise (true), i.e., most probable
value (expectation value). The more a measurement is repeated, the more precisely
are the probability distribution and the most probable value determined and the
less becomes the statistical (measuring) uncertainty (see below).

2. Average Value, Standard Deviation, Statistical Uncertainty

The best evaluation for the most probable value of a measured quantity x out of n
different single measurements xi is obtained b y taking the arithmetic average
value ̄x
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Very o ften a shortened no tation is used in the literature c ontaining statistical
equations with expressions of sums, where the lower and upper summation limit
and the summation index is suppressed:

This shortened notation will be used in the following text. 

Once the average value is known, the moduli of differences 
xi - x̄
, denoting the
deviations of single measuring results from the average value, give some estimate
for the precision of the measurements. Because of numerical reasons, the moduli
of the differences are replaced by the squares (xi - x̄)2 and the standard deviation
s is defined by

The standard deviation gives the statistical average error of a single measurement.
By introducing the (positive) square root, the quantity s has the same units as the
measured quantity and is therefore comparable with it. The division by  n - 1
instead by n takes into account, that for only a single measurement (n = 1) no
statistical statement can be given, i.e., s is not defined.

The equation defining the standard deviation is usually not that given by eq. (3).
All pocket calculators use instead the fully equivalent equation

because, when using eq. (4), not the single measured values x, but only the sum
� x and the sum of the square � x2 has to be stored.

Besides the calculation of the average value and the standard deviation, it is often
interesting to consider the value of the statistical uncertainty of the average value
as well. This is because x̄ is just a guess of the result x according eq.  (2), which
for a small number n o f single measurements, can b e very unprecise. The
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statistical measuring uncertainty u is a measure of the (statistical average) error of
the average value x̄:

While the standard deviation s as a measure of the statistical spread o f single
measured values xi approaches a finite value > 0 with increasing n, the statistical
measuring uncertainty u of the average value x̄ decreases with increasing n and
approaches zero at large n.

Very often the measured values xi are so called "normally" distributed, i.e., their
relative probabilities are given by the Gaussian distribution function Q(x):

The integral

gives the probability that the values xi (for a large number of measurements n � �)
lie within the interval (x1, x2). As shown by Fig. 1, the function Q(x) is symmetric
around the most probable value x0 (the expectation value) and has the shape of a
bell with a full width at half maximum of somewhat more than 21.

For very large n, the a verage value x̄ d etermined from the measuring series
approaches the value x0 o f the function Q(x), and the standard d eviation s
approaches the value 1. The probability that the result xi of a single measurement
lies within the interval x̄ ±s, i.e., x0 ± 1, amounts according to eq. (7) to about
68 %, for the interval x0 ± 21 to about 95 % and for x0 ± 31 already 99.7 %.
Similar relations are valid for the statistical measuring uncertainty u of the average
value: the probability of the true value x0 lying within the so called (unit) range of
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Fig. 1: Gaussian distribution function Q(x) with most probable value
x0 and intervals x0 ± 1, x 0 ± 21, and x 0 ± 31 for r elative
frequencies 68%,  95%, and 99,7% of measuring value xi

n� 
 2dsin�n ,

confidence ̄x± u is about 68 %, for the twofold and threefold range of confidence ̄x
± 2u and  x̄ ± 3u about 95 % and 99.7 %, respectively.

One has to take into consideration, however, that the evaluation of the statistical
measuring un certainty or the range of statistical confidence for the value x̄ is
physically reasonable only in combination with the e valuation o f possible
systematic errors. The total error of a result obtained from a measurement i s
always the sum of moduli for systematic and statistical errors. It is, therefore, not
useful to repeat a measurement very often just for minimizing the statistical error
if the evaluated systematic error exceeds the former by orders of magnitude.

Example 1: In the experiment B10 (experiment with x-rays) the lattice constant d
of NaCl is to be determined from the Bragg reflection using Bragg's law

with the wavelength �  = 154 pm and the measured Bragg angles �n (n = 1, 2, 3).

Typical values are given in the table below.
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n �n (°) dn (pm)

1 16.0 279.4 

2 33.2 281.3 

3 55.15 281.5 

Using these values the following are found:

the average value: d = 280.73 pm,

the standard deviation: s = 1.16 pm,

the statistical uncertainty u of the average value d , u= 0.67 pm,

Finally,    

d = (280.73 ± 0.67) pm = 280.73 pm ± 0.2 % ,

if no error ( statistical or systematic) in the measured angles �n is considered.
(Otherwise see example 2 below!)

Notice: Any estimated error should no t contain more than 2 o r 3 d ecimal
positions. The final result is to be rounded correspondingly. Very often it does not
make any sense and only simulates precision to present the many decimal places
displayed by a pocket calculator.

Additional notice: Comparison of the result for d given above with the value dNaCl
= 282.0 p m, known from the literature, and with those obtained u sing other
experimental setups in the laboratory, reveals a systematic deviation o f �n (of
roughly 0.5% - depending on the system used - because of inaccurate
adjustments). In this case, the value of the statistical uncertainty presented is not
significant at all to estimate the (actual true) error of d. If u is replaced by the
standard deviation s, the result   

d = (280.73 ± 1.16) pm = 280.73 pm ± 0.4 %

can account to a better extent the actual error but this presentation does not solve
the p roblem principally, i.e., ho w the systematic e rror present in this case is
properly taken into account. One possibility to solve the problem is to take into
consideration that an inherent (constant) systematic e rror û�s (because of
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misalignment of both the crystal and the detector) has to be taken into account
when using Bragg's law for the evaluation of � from the experimental data, i.e.,
� = �m + û�s, where �m is the measured value. Since in the experiment considered
the task is not to validate Bragg's law but to determine the lattice constant d, we
state that Bragg's law is valid in any order n, i.e., that the value of d is independent
of n. Combining Bragg's law, e.g., for n = 1 and 2, û�s can be calculated with the
values in the table of example 1 from

Using this systematic correction û�s of the angle �m, the values d1 = 282.8 pm; d2
= 282.8 pm (i.e., d1 = d2) and d3 = 282.2 pm are obtained. Thus, the average of the
corrected result for d is 

d = 282.6 pm ,

which is closer to the value dNaCl = 282.0 pm known from the literature than the
value d = 280.73 p m presented above, without t aking into consideration the
correction of the systematic error.

3. Propagation of Errors

Generally, the determination of a physical quantity y requires the measurement of
several single (different) parameters x1, x2, ... In this context, the question arises
how far the single errors ûxi resulting from the measurement of the individual
parameters determine the uncertainty ûy of the quantity y. If the errors ûxi are
small as comparted to xi, the function y expanded into a power series of  the errors
ûxi  around the values xi is approximately given by the terms linear in ûxi . The
error ûy resulting, e.g., from a single error ûxi is given by

To estimate the largest possible absolute error (ûy)max by taking into account all
possible single errors ûxi, the following relation is defined:
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Example 2: In the experiment B10 (experiment with x-rays, see also example 1)
the lattice constant d of NaCl is to be determined from the Bragg reflection using
the relationship

with the wavelength �  = 154 pm and the measured Bragg angles �n (n = 1, 2, 3).
Assuming a statistical error û� = ± 0.25° = 0.0044 of every measured angle �n, the
maximum statistical error ûdmax is according to eq. (9)

Taking the numerical �-values presented in example 1 we obtain

(ûd)max = 0.112 ( 12.65 + 5.58 + 2.55 ) pm = 2.33 pm;    (ûd)max / d = 0.83 %

It is noted that the error contribution from the first Bragg angle �1 is the largest
one, because the error û�1/�1 is the largest one, consistent with the observation in
the table of example 1, where the deviation of (d1 - dNaCl ) is the largest one too.

Example 3: In the experiment B8 (determination of the specific charge e/m of the
electron) the ratio e/m is determined from m easurements of the acc eleration
voltage U and of the current I through the coils with radius R for an electron beam
with circular radius r.
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(10)

û(e/m)
(e/m) max


 0.02 � 0.03 � 0.034 � 0.09 
 0.174 .

y 
 a � bx . (11)

Since e/m is a product of powers of the variables R, U, r, and I, the expression of
the largest possible relative error of e/m is rather simple. Taking into account the
errors ûR, ûU, ûr, and ûI, the largest possible relative error of e/m is given by

Typical estimates of errors and values of measured quantities are

ûR = ± 2 mm R = 20 cm ûR/R = 0.01
ûU = ± 6 V U = 200 V ûU/U = 0.03
ûr = ± 0.5 mm r = 3 cm ûr/r = 0.017
ûI = ± 90 mA I = 2 A ûI/I = 0.045 

resulting in

4.  Graphs and Linear Regression

In experimental physics, the a im is often to validate a theoretically predicted
functional dependence of two quantities x and y by a measurement. In simple
cases, the quantities x and y are linearily connected, i.e.,

Since every measurement is inherent with an error, the data (xi , yi) in a graph yi vs.
xi will scatter more or less around a straight line drawn through the data points. It
is the task to find an optimum straight line balancing the deviations due to errors
(i.e. that line which would represent the data if the errors were absent). This is the
regression line. It can be simply done by a visual estimate, i.e., by drawing a
suitable straight line with a ruler. A more objective way to construct the regression
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� (a � bx 	 y)2 ,     
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 0 , 0
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. (14)

b 
 �xy
�x 2 (15)

line is the least mean square fit; the calculation of the parameters a and b of eq.
(11) (a: intercept on y-axis, b: slope of line) with the condition

being an absolute minimum. If this is the case, a and b fulfil the condition

Differentation yields the equation system

with the solution

Note: For a regression line through the origin of the coordinate system, i.e. for the
line y = b x  (a = 0) the corresponding solution is

The linear r egression algorithm using the method o f the least mean squares is
almost always applied to find an op timum fit to the data. It i s (besides the
(arithmetic average) the most frequently used algorithm and, therefore, is included
in many pocket calculators.

When using the (critical) regression coefficient R2, one has to be cautious. With R2

the qu ality of f it functions with several i ndependent measuring series can b e
compared. The coefficient of a single measuring series, however, has no physical
meaning.

In cases where the quantity Y(X) does not li nearly depend on X, it may be
possible to find a proper transformation Y(X) � y(x) so that a linear relationship
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y = a + bx holds.

Some examples are given in the following table:

function
Y(X)

transformation y = a + b x

y(X,Y) x(X,Y) a b

A XB ln (Y) ln (X) ln (A) B

A exp (BX) ln (Y) X ln (A) B

A X + B X3 Y / X X2 A B


	B10_xray_description_EN
	ISE experiments_full_EN
	B10_xray_manual_EN
	Appendix_Error

