UNIVERSITÄT DUISBURG-ESSEN

Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik Lehrstuhl Steuerung, Regelung und Systemdynamik
Systemdynamik
90 Minuten
Seite 1

Einlesezeit

Für die Durchsicht der Klausur wird eine „Einlesezeit" von 10 Minuten gewährt. Während dieser Zeitdauer ist es Ihnen nicht gestattet, mit der Bearbeitung der Aufgaben zu beginnen. Dies bedeutet konkret, dass sich während der gesamten Dauer der Einlesezeit keinerlei Schreibgeräte (Stifte, Füller, etc.) auf dem Tisch befinden dürfen sowie die Nutzung von mitgeführten Unterlagen respektive (elektronischer) Wörterbücher bzw. tragbarer Translater strengstens untersagt ist. Nehmen Sie Ihre Schreibgeräte erst zur Hand, wenn die Prüfungsaufsicht auf das Ende der Einlesezeit hingewiesen hat und füllen Sie zunächst das Deckblatt vollständig aus.

> Viel Erfolg!

NAME	$1,1$
VORNAME	/usterloesuna
MATRIKEL-NR.	\checkmark
TISCH-NR.	

Klausurunterlagen

Ich versichere hiermit, dass ich sämtliche für die Durchführung der Klausur vorgesehenen Unterlagen erhalten, und dass ich meine Arbeit ohne fremde Hilfe und ohne Verwendung unerlaubter Hilfsmittel und sonstiger unlauterer Mittel angefertigt habe. Ich weiß, dass ein Bekanntwerden solcher Umstände auch nachträglich zum Ausschluss von der Prüfung führt. Ich versichere weiter, dass ich sämtliche mir überlassenen Arbeitsunterlagen sowie meine Lösung vollständig zurück gegeben habe. Die Abgabe meiner Arbeit wurde in der Teilnehmerliste von Aufsichtsführenden schriftlich vermerkt.
Durch die Teilnahme versichere ich, dass ich prüfungsfähig bin. Bei Krankheit werde ich die Klausur vorzeitig beenden und unmittelbar eine Ärztin/einen Arzt aufsuchen.

Die obigen Angaben sowie die Unterschrift
sind ZWingend Zu Klausurbeginn zu leisten.

Duisburg, den
(Datum)
(Unterschrift der/des Studierenden)
\qquad Uhr

Bewertungstabelle

Aufgabe 1	
Aufgabe 2	
Die Bewertung gem. PO in Ziffern ist der xls-Tabelle bzw. dem Papierausdruck zu entnehmen.	

(Datum und Unterschrift 1. Prüfer, Univ.-Prof. Dr.-Ing. Dirk Söffker)
(Datum und Unterschrift 2. Prüfer, Dr.-Ing. Sandra Rothe)
(Datum und Unterschrift des für die Prüfung verantwortlichen Prüfers, Söffker)

Fachnote gemäß Prüfungsordnung: (alternativ: siehe xls-Tabelle bzw. beigefügter Papierausdruck)

| \square |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1,0 | 1,3 | 1,7 | 2,0 | 2,3 | 2,7 | 3,0 | 3,3 | 3,7 | 4,0 | 5,0 |
| sehr gut | | gut | | | befriedigend | | | ausreichend | | mangelhaft |

Bemerkung: \qquad

Maximal erreichbare Punktzahl:	54
Mindestprozentzahl für die Note 1,0:	$\mathbf{9 5 \%}$
Mindestprozentzahl für die Note 4,0:	$\mathbf{5 0 \%}$

Allgemeine Hinweise:

1) Für die Multiple-Choice und multiple-choice-ähnlichen Fragen gilt:
i) Bei Aufgaben mit Einzelbewertung von Teilaufgaben gilt: Nur korrekte Teilantworten werden mit der vorgesehenen Teilpunktzahl bewertet.
ii) Die in einer Teilaufgabe anfallenden Punkte werden aufsummiert.
iii) Sofern nicht explizit anders dargestellt ist nur eine der angegebenen Lösungsoptionen korrekt.
iv) Falls Teilaufgaben mehr als zwei Antwortoptionen beinhalten und nur eine Lösung existiert: Das Ankreuzen von mehreren Antwortoptionen wird auf Grund der nicht eindeutigen Willensäußerung als NICHTantwort interpretiert. Hieraus resultiert, dass in diesem Fall keine Punkte gegeben werden können.
2) Sollten im Einzelfall keine zulässigen Zahlenbereiche für Zeitkonstanten, Massen etc. angegeben sein, gehen Sie immer von positiven Zahlenwerten für die Zeit und für Massen aus.
3) Sollte im Einzelfall keine Angabe zu positiver oder negativer Rückführung angegeben sein, gehen Sie immer von der üblichen negativen Rückführung aus.

UNIVERSITÄT DUISBURG-ESSEN

Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik Lehrstuhl Steuerung, Regelung und Systemdynamik Systemdynamik

Aufgabe 1 (41 Punkte)

Markieren Sie in den folgenden Aussagen die richtige Lösung.
1a) (10×1 Punkt, 10 Punkte)
Gegeben sei das Ausgangsverhalten zweier Systeme.

Abbildung 1.1: Systemausgänge

A1) (1 Rankt)
System 1 weist ein
\bigcirc
proportionalesintegrales
$\not \&$ differentielles
Verhalten auf.

A2) (1 Punkt)
System 2 weist ein
\not proportionales
\bigcirc integrales
\bigcirc differentielles
Verhalten auf.

A3) (1 Punkt)
Welches System weist eine statische Verstärkung gleich null auf?
Nur System 1Nur System 2System 1 und System 2

A4) (1 Punkt)
Als Eingang von System 1 liegt
\notin ein Sprungein Impulseine Sinusfunktionein Rampensignal
an.

UNIVERSITÄT DUISBURG-ESSEN
Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik
Lehrstuhl Steuerung, Regelung und Systemdynamik
Systemdynamik

A5) (1 Punkt)
Als Eingang von System 2 liegt
\nsim ein Sprung
\bigcirc ein Impuls
O eine Sinusfunktionein Rampensignalein beliebiges beschränktes Signal
an.

A6) (1 Punkt)
Systemverhaltensweisen sind oft durch das Vorliegen einer Totzeit gekennzeichnet. Im konkreten Fall gilt dies für
\bigcirc System 1.
\bigcirc System 2.
O System 1 und System 2.
\notin keines der Systeme.

A7) (1 Punkt)
Der Ausgang von System 1 zeigt stationäres Verhaltenzum Zeitpunkt t_{1}.zum Zeitpunkt, t_{2}.
毋 zum Zeitpunkt t_{3}.
○ zu keinem der genannten Zeitpunkte.

UNIVERSITÄT DUISBURG-ESSEN

Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik
Lehrstuhl Steuerung, Regelung und Systemdynamik
Systemdynamik

A8) (1 Punkt)
Der Ausgang von System 2 zeigt stationäres Verhaltenzum Zeitpunkt t_{1}.zum Zeitpunkt t_{2}.zum Zeitpunkt t_{3}.
$\not \subset \mathrm{zu}$ keinem der genannten Zeitpunkte.
A9) (1 Punkt)
Welches der Systeme ist ein System nullter oder erster Ordnung?
\bigcirc System 1
\bigcirc System 2System 1 und System 2
\& Keines der Systeme

A10) (1 Punkt)
Ab dem Zeitpunkt t_{3} liegt beim System 1 keine Eingangsgröße mehr an. Diese Aussage ist
O richtig, weil das Ausgangsverhalten gegen null geht.
\nless
falsch, weil es sich um ein differenzierendes Systemverhalten handelt.
\bigcirc falsch, weil der Ausgang eines PT_{1}-Systems immer ausgleichend gegen null strebt.

O richtig, weil es sich bei dem Verhalten - wie ersichtlich - nur um eine Störung handelt, die zum Zeitpunkt t_{0} wirkt. Es hat nie eine Eingangsgröße angelegen.

UNIVERSITÄT DUISBURG-ESSEN

Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik Lehrstuhl Steuerung, Regelung und Systemdynamik Systemdynamik

1b) (3×1 Punkt, 3 Punkte)
Zahlreiche regelungstechnische Methoden und Vorgehensweisen verwenden Modelle bzw. auf geeigneten Beschreibungsmitteln basierende Beschreibungen des E/A- oder Gesamtsystemverhaltens.

B1) (1 Punkt)
Der Korrektheit von Modellen (z. B. im Kontext der Nutzung zur rechnerbasierten Simulation) kommt eine zentrale Bedeutung zu. Modellvalidierung beinhaltet
\bigcirc die Prüfung, ob sich ein Modell programmiertechnisch gut eignet, um in einer Simulation auf Basis geeigneter Eingangsgrößen und Modellparameter die gewünschten Ausgangsgrößen zu liefern.

1
die Prüfung, ob sich das Modellverhalten in gleicher Weise auch mindestens für den beanspruchten Gültigkeitsbereich bei einem realen System zeigt (z. B. durch Messungen).

O die Zertifizierung der Modellbeschreibung und des Modellverhaltens durch eine geeignete Behörde oder Prüfinstitution.

B2) (1 Punkt)
Modellbildung kann auf unterschiedliche Weise erfolgen. Theoretische Modellbildung
basiert auf der Nutzung von Axiomen (first principles) und leitet mit spezifischen Methoden z. B. der Mathematik oder der Logik Beschreibungen ab, welche dann innerhalb eines definierten Gültigkeitsbereiches verwendet werden.

O basiert auf der Nutzung von Theorien wie Modelle generiert werden, z. B. heuristisch oder statistisch.
\bigcirc
ist ein sehr neuer Begriff und bezeichnet die Nutzung von Modellen wie sie z. B. mit Hilfe theoretischer Methoden aus dem Bereich des maschinellen Lernens aufgestellt werden. Theoretische Modelle bilden daher eine neue Klasse von Modellen gegenüber konventionellen, auf Formeln wie z. B. von Newton, Euler oder Kirchhoff basierenden Modellen.

Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik
Lehrstuhl Steuerung, Regelung und Systemdynamik
Systemdynamik

B3) (1 Punkt)
Die Approximation von PT_{2}-ähnlichen Verhaltensweisen unter Nutzung von PT_{1} - sowie Totzeitelementen basierend auf Messungen lässt sich dem Bereich derdatenbasierten Modellbildung z. B. mit Hilfe von Methoden des maschinellen Lernens

O theoretischen Modellbildung
\& experimentellen Modellbildung
zuordnen.

1c) $(5 \times 1$ Punkt, 5 Punkte)
Basierend auf der Zustandsraumbeschreibung

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

und den bekannten mathematischen Zusammenhängen

$$
\begin{array}{rll}
\operatorname{det}\left(\lambda_{i} I-A\right)=0 & \rightarrow \lambda_{i} & \text { (Eigenwertgleichung) } \\
A v_{i}=\lambda_{i} v_{i} & \rightarrow v_{i} & \text { (Eigenvektorgleichung) }
\end{array}
$$

sowie

$$
\begin{aligned}
V & =\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right] \quad \text { (Modalmatrix) } \\
A V & =V \operatorname{diag}\left[\lambda_{i}\right] \triangleq \underbrace{V^{-1} A V}_{\tilde{A}}=\operatorname{diag}\left[\lambda_{i}\right]
\end{aligned}
$$

erläutern Sie mit Ihren Antworten der nachstehenden Teilaufgaben was dieses konkret bedeutet.

C1) (1 Punkt)
Ein einzelner Eigenvektor v_{i} beschreibt
O die Frequenz mit der ein System schwingt/oszilliert.
(die zeitlich gleichbleibenden Zusammenhänge zwischen den beschreibenden Zu standsvariablen x_{i}.

O die Zusammenhänge in der Modalmatrix.
\bigcirc die Länge eines Eigenwertes.
\bigcirc die Auslenkung eines schwingenden Balkens.
\bigcirc die Auslenkungsform eines schwingenden Balkens.
\bigcirc die Schwingamplitude eines schwingenden Balkens.

C2) (1 Punkt)

Ein komplexer Eigenwert λ_{i} beschreibt
\bigcirc die Frequenz mit der ein System schwingt/oszilliert.

die Frequenz mit der ein System schwingen/oszillieren kann, wenn die zugehörige Dämpfung D geeignet klein ist.
\bigcirc die Amplitude mit der ein System schwingen/oszillieren kann, wenn die zugehörige Dämpfung D geeignet klein ist.

O die Frequenz mit der ein System schwingen/oszillieren kann, wenn die zugehörige Dämpfung D geeignet groß ist.
\bigcirc die Amplitude mit der ein System schwingen/oszillieren kann, wenn die zugehörige Dämpfung D geeignet groß ist.

O die Frequenz mit der ein System schwingen/oszillieren kann, wenn der Realteil klein genug ist.

O die Frequenz mit der ein System schwingen/oszillieren kann, wenn der Realteil groß genug ist.
\bigcirc die Frequenz mit der ein System schwingen/oszillieren kann, wenn der Imaginärteil klein genug ist.

O die Frequenz mit der ein System schwingen/oszillieren kann, wenn der Imaginärteil groß genug ist.

C3) (1 Punkt)
Die Modalmatrix V ist
\bigcirc die Summe aller Eigenvektoren.
O das Produkt aller Eigenvektoren.
O die diagonalisierte Matrix der Eigenwerte (in Block-Jordan Form).
Q eine aus den Eigenvektoren gebildete Matrix.
O die Vektordarstellung der Eigensummen.
\bigcirc die Inverse der aus den Eigenvektoren gebildeten Matrix.

UNIVERSITÄT DUISBURG-ESSEN

Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik
Lehrstuhl Steuerung, Regelung und Systemdynamik
Systemdynamik

C4) (1 Punkt)
Die Matrix \tilde{A} wird
O durch Ähnlichkeitstransformation mit Hilfe der diagonalisierten Eigenwertmatrix gebildet.
\bigcirc durch Rechtsmultiplikation mit der Modalmatrix gebildet.
\bigcirc durch Linksmultiplikation mit der inversen Modalmatrix gebildet.
\bigcirc durch Rechtsmultiplikation mit der diagonalisierten Eigenwertmatrix gebildet.
\& durch Ähnlichkeitstransformation mit Hilfe der Modalmatrix gebildet.

C5) (1 Punkt)
Die Systemmatrix A und die zugehörige diagonalisierte Systemmatrix \tilde{A} beschreiben
\& das gleiche physikalische System in unterschiedlichen Koordinatensystemen.
\bigcirc das gleiche physikalische System im gleichen Koordinatensystemen.zwei unterschiedliche physikalische Systeme in unterschiedlichen Koordinatensystemen.zwei unterschiedliche physikalische Systeme im gleichen Koordinatensystem.

UNIVERSITÄT DUISBURG-ESSEN

Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik
Lehrstuhl Steuerung, Regelung und Systemdynamik
Systemdynamik

1d) $(6 \times 1$ Punkt, 6 Punkte $)$

D1) (1 Punkt)
Betrachtet werde das durch

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-d & -e & -f
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{ccc}
b_{3} & 0 & 0 \\
0 & b_{2} & 0 \\
0 & 0 & b_{1}
\end{array}\right] u ; y=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] ; d, e, f, b_{1}, b_{2}, b_{3}>0
$$

beschriebene System. Es handelt sich um ein
○ PT_{2}-System.
$\bigcirc \mathrm{PT}_{3}$-System.
\bigcirc System erster Ordnung mit proportionalem Eingang.
\$ System mit mehreren Eingängen und mehreren Ausgängen (MIMO) in Zu standsraumdarstellung.

D2) (1 Punkt)
Als Rückführung des Systems aus D1) werde ein Regler $u=\left[\begin{array}{lll}0 & 0-K x_{2}\end{array}\right]^{T}$ verwendet. Durch eine Rückführung mit $K>0$ für $d=4, e=3, f=3, b_{3}=0, b_{2}=0$, and $b_{1}=1$ lässt sich das Systemverhalten
beeinflussen.nicht beeinflussen.

UNIVERSITÄT DUISBURG-ESSEN

Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik
Lehrstuhl Steuerung, Regelung und Systemdynamik Systemdynamik

D3) (1 Punkt)
Der Begriff „Übergangsfunktion" bezeichnet den
O Eingang des Systems als Sprung.
Oingang des Systems als Funktion.
O Ausgang des Systems als Sprung.
\bigcirc Ausgang des System als Funktion.
\bigcirc Eingang des Systems, wenn auf der Ausgangsseite ein Sprung anliegt.
\nsupseteq Ausgang des Systems, wenn auf der Eingangsseite ein Sprung anliegt.

D4) (1 Punkt)
Es gilt $\int_{0}^{\infty} \delta(t)=1$. Was bedeutet das?
\bigcirc Die Amplitude des Impulses δ ist 1 .
\bigcirc Die Zeitdauer des Impulses δ ist 1 .
Q Der Impuls δ schließt eine Fläche der Größe 1 ein.
\bigcirc Die Ableitung des Impulses δ ist 1 (Sprungfunktion).

D5) (1 Punkt)
Die Ein-/Ausgangsbeschreibung

$$
a_{n} y^{(n)}(t)+a_{n-1} y^{(n-1)}(t)+\ldots+y(t)=K\left[u(t)+\frac{1}{T_{\mathrm{I}}} \int u(t) d t\right] ; a_{i} \neq 0, K, T_{\mathrm{I}}>0, i=1 \ldots n
$$

beschreibt ein $\operatorname{PIT}_{\mathrm{n}}$-System in einer für die Klassifizierung geeigneten Standardform. Die Aussage „Es handelt sich um ein System n-ter Ordnung" ist
Q
richtig, da der Koeffizient a_{n} ungleich null ist.
\bigcirc
richtig, da der Ausgang y durch einen neuen Ausgang $y_{\text {neu }}$ mit $y=\int y_{\text {neu }} \mathrm{d} t$ ersetzt werden kann.falsch, da es sich um ein $\mathrm{PDT}_{\mathrm{n}}$-System handelt.falsch, da nicht angegeben ist, ob alle Koeffizienten existieren.

UNIVERSITÄT DUISBURG-ESSEN

Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik Lehrstuhl Steuerung, Regelung und Systemdynamik Systemdynamik

D6) (1 Punkt)
Ein System mit der Eigenwertverteilung

kann folgendes Verhalten aufweisen.

Diese Aussage ist
\bigcirc richtig, da anhand der Eigenwertverteilung auf ein integrales Systemverhalten geschlossen werden kann.
\bigcirc richtig, da das konjugiert komplexe Polpaar gedämpfte Schwingungen beschreibt.

〇 falsch, da das Systemverhalten instabil ist.falsch, da der rein reale Eigenwert für das instabile Verhalten verantwortlich ist.
falsch, da die Eigenwertverteilung kein integrales Systemverhalten beschreibt.richtig, da der rein reale Eigenwert für das integrale Verhalten verantwortlich ist.

UNIVERSITÄT DUISBURG-ESSEN
Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik
Lehrstuhl Steuerung, Regelung und Systemdynamik
Systemdynamik
20. April 2021

Seite 16
1e) (6×1 Punkt, 6 Punkte)
In der Abbildung 1.2 sind die Eigenwerte von vier verschiedenen linearen Systemen ohne Totzeit grafisch dargestellt. In Abbildung 1.3 werden vier gemessene Ausgangsfunktionen wiedergegeben.

Abbildung 1.2: Eigenwertverteilungen von vier verschiedenen Systemen

Abbildung 1.3: Ausgangsfunktionen

UNIVERSITÄT DUISBURG-ESSEN

Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik
Lehrstuhl Steuerung, Regelung und Systemdynamik
Systemdynamik

E1) (1 Punkt)
Die Messung B zeigt ein System mit
\bigcirc proportionalem
x integralemdifferentiellemchaotischem

Verhalten auf.

E2) (1 Punkt)
Die Messung B weist
$\not \subset$ Totzeitverhalten
(kein Totzeitverhalten
O Bounded-Input, Bounded-Output (BIBO) stabiles Verhaltenexponentiell instabiles Verhalten
auf.

E3) (1 Punkt)
Die Messung C weist auf ein Systemverhalten
O ohne Dynamik (dynamische Eigenschaften)
Q mit Dynamik (dynamische Eigenschaften)
\bigcirc ohne Totzeit
O ohne Trägheit
hin.

E4) (1 Punkt)
Bei der Messung D handelt es sich um die Übergangsfunktion eines
$\bigcirc \mathrm{PDT}_{1}$-Systems.
$\not \equiv \mathrm{DT}_{1}$-Systems.
\bigcirc PIDT $_{1}$-Systems.

E5) (1 Punkt)
Die Messung C entspricht dem Verhalten eines
$\bigcirc \mathrm{IT}_{1} \mathrm{~T}_{\mathrm{t}}$-Systems mit $\mathrm{T}_{\mathrm{t}}<0$.

- $\mathrm{IT}_{2} \mathrm{~T}_{\mathrm{t}}$-Systems mit $\mathrm{T}_{\mathrm{t}}>0$.
$\bigcirc \mathrm{PIT}_{2} \mathrm{~T}_{\mathrm{t}}$-Systems mit $\mathrm{T}_{\mathrm{t}}<0$.
$\& \mathrm{PT}_{2} \mathrm{~T}_{\mathrm{t}}$-Systems mit $\mathrm{T}_{\mathrm{t}}>0$.

E6) (1 Punkt)
Das aus Messung B hervorgehende Systemverhalten kann durch

- System 1

O System 3
\& Serienschaltung der Systeme 1 und 3 und zusätzliche Totzeit
O Serienschaltung der Systeme 1 und 3
Parallelschaltung der Systeme 1 und 3 und zusätzliche Totzeit
\bigcirc^{*} Parallelschaltung der Systeme 1 und 3
beschrieben werden.

UNIVERSITÄT DUISBURG-ESSEN
Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik
Lehrstuhl Steuerung, Regelung und Systemdynamik
Systemdynamik

1f) (4×1 Punkt, 4 Punkte)

F1) (1 Punkt)
Welche Aussage ist falsch?
\bigcirc Die Lage der Eigenwerte in der komplexen Ebene erlaubt eine Aussage über die Stabilität des zugrunde liegenden Systems.

O Die Lage der Eigenwerte in der komplexen Ebene erlaubt eine Aussage über die Dämpfung der Moden des Systems.
\bigcirc Ein System gilt als stabil, wenn es keine Eigenwerte gibt für die gilt: $\operatorname{Re}\left\{\lambda_{i}\right\}>0$.

Ein System gilt als instabil, wenn es Eigenwerte gibt für die gilt: $\operatorname{Re}\left\{\lambda_{i}\right\}>0$.
\bigcirc Ein System gilt als grenzstabil, wenn für die Eigenwerte $\operatorname{Re}\left\{\lambda_{i}\right\} \leq 0$ gilt und ein Eigenwert im Ursprung der s-Ebene liegt.
2. E/A-stabile Systeme sind immer zustandsstabil.

F2) (1 Punkt)
Systembeschreibungen der Art

$$
\begin{aligned}
y & =\frac{1}{T_{1}} \int u \mathrm{~d} t \\
T_{1} \dot{y}+y & =\frac{1}{T_{1}} \int u \mathrm{~d} t \\
\frac{1}{\omega_{0}^{2}} \ddot{y}+\frac{2 D}{\omega_{0}} \dot{y}+y & =\frac{1}{T_{1}} \int u \mathrm{~d} t
\end{aligned}
$$

bilden folgendes Verhalten ab:
\& integrales E/A-Verhalten mit unterschiedlicher Ausgangsdynamik.
○ proportionales E/A-Verhalten mit unterschiedlicher Ausgangsdynamik.
O differenzierendes E/A-Verhalten mit unterschiedlicher Ausgangsdynamik.
O integrales E/A-Verhalten mit unterschiedlicher Eingangsdynamik.
O proportionales E/A-Verhalten mit unterschiedlicher Eingangsdynamik.
differenzierendes E/A-Verhalten mit unterschiedlicher Eingangsdynamik.

UNIVERSITÄT DUISBURG-ESSEN

Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik
Lehrstuhl Steuerung, Regelung und Systemdynamik
Systemdynamik
20. April 2021

Seite 20
F3) (1 Punkt)
Grundsätzlich lassen sich bei der Reglerauslegung die Auslegungsziele hinsichtlich des Füh-rungs- und Störverhaltens unterscheiden. Welche der nachfolgenden Aussagen ist falsch?

〇 Führungs- und Störverhalten können bei linearen Systemen unabhängig voneinander betrachtet werden, da die jeweiligen Ausgänge überlagert werden.
x
Jeder stabile Regelkreis, der die Forderung nach Sollwertfolge erfüllt, ist auch zur vollständigen Kompensation von Störungen geeignet.

- Bei einer proportionalen Strecke ist ein integraler Regler sowohl zur Verbesserung des Führungsverhaltens als auch des Störverhaltens geeignet.
\bigcirc Jeder asymptotisch stabile Regelkreis erfüllt die Forderung nach Störkompensation für impulsförmige Störsignale.

F4) (1 Punkt)
Die Vorgehensweise des Ziegler-Nichols Kriteriums bei schwingungsfähigen proportionalen Strecken ist
\& eine experimentelle Einstellstrategie.
O eine auf analytischen Betrachtungen basierte Einstellstrategie zur Bestimmung der besten PID-Reglerparameter.eine Strategie, die mit Sicherheit immer die besten Reglerparameter gemäß dem ITAE-Kriterium liefert.

O perfekt.
\bigcirc komplex.

- eine Strategie, die eine komplexe Interaktion des automatisierten Reglers mit der Regelstrecke erfordert und daher im Zuge von Industrie 4.0 zukunftsfähig ist.
- eine Strategie aus dem Jahr 1942, die auf Grund der zugrunde liegenden Automatisierungsfähigkeit in der Zukunft Arbeitsplätze von Regelungstechnikern wegrationalisieren wird.

UNIVERSITÄT DUISBURG-ESSEN
Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik
Lehrstuhl Steuerung, Regelung und Systemdynamik
Systemdynamik
20. April 2021

Seite 21
In Abbildung 1.4 ist das Blockschaltbild eines Systems, bestehend aus vier Übertragungselementen, mit den Eingängen w und u und dem Ausgang y gegeben.

Abbildung 1.4: Blockschaltbild des Systems

1g) (4 Punkte)
Klassifizieren Sie die Übertragungsverhaltensweisen (Typ des Einzelübertragungsverhaltens) der Elemente 1 bis 4 und geben Sie jeweils die entsprechende Differenzialgleichung unter Berücksichtigung der vorgegebenen Bezeichnungen in einer zur Klassifizierung geeigneten Form an.

$$
\begin{array}{ll}
\text { Element 1: } & T_{1} \dot{x}_{2}+x_{2}=k_{1} x_{1}(P T 1) \\
\text { Element 2: } & \frac{1}{w_{2}^{2}} \ddot{x}_{3}+\frac{2 D_{2}}{w_{2}} \dot{x}_{3}+x_{3}=k_{2} x_{2} \\
(P T 2) \\
\text { Element 3: } & y=k_{3} x_{3}(t-15)(P T t) \\
\text { Element 4: } & x_{5}=T_{D} \dot{x}_{4}(D)
\end{array}
$$

UNIVERSITÄT DUISBURG-ESSEN
Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik Lehrstuhl Steuerung, Regelung und Systemdynamik
Systemdynamik
20. April 2021

Seite 22
1h) (2 Punkte)
Bestimmen Sie für die Parameter $T_{1}=D_{2}=w_{2}=T_{\mathrm{D}}=K_{1}=K_{2}=K_{3}=1$ die Differenzialgleichung des Gesamtsystems aus Abbildung 1.4 mit w als Eingang und y als Ausgang.

Hinweis: $\mathrm{PT}_{1} \mathrm{~T}_{\mathrm{t}}: T_{1} \dot{y}+y=K_{\mathrm{S}} \cdot u\left(t-T_{\mathrm{t}}\right)$

$$
\begin{aligned}
& \dot{x}_{2}+x_{2}=x_{1} \\
& \ddot{x}_{3}+2 \dot{x}_{3}+x_{3}=x_{2} \\
& y=x_{3}(+-15) \\
& x_{5}=\dot{x}_{4} \\
& x_{1}=u-x_{5} \\
& x_{4}=y-w
\end{aligned}
$$

UNIVERSITÄT DUISBURG-ESSEN
Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik
(2) in (1):

$$
\ddot{x}_{3}+3 \ddot{x}_{3}+3 \dot{x}_{3}+x_{3}=x_{1} \quad\left(1^{*}\right)
$$

(6) in (4) und (4) in (5)

$$
x_{1}=-\dot{y}+\dot{w}\left(5^{*}\right)
$$

(3) in $\left(1^{*}\right)$ and $\left(5^{*}\right)$ in $\left(1^{x}\right)$

$$
\begin{aligned}
& \ddot{y}(t)+3 \ddot{y}(t)+3 \dot{y}(t)+y(t)=\dot{w}(t-1) \\
&-\dot{y}(t-1) \\
& \Rightarrow \ddot{y}(t)+3 \ddot{y}(t)+3 \dot{y}(t)+y(t)+\dot{y}(t-1)=\dot{w}(t-1)
\end{aligned}
$$

UNIVERSITÄT DUISBURG-ESSEN

Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik Lehrstuhl Steuerung, Regelung und Systemdynamik Systemdynamik

1i) (1 Punkt)
Klassifizieren Sie das Übertragungsverhalten des Gesamtsystems aus Abbildung 1.4 unter Vernachlässigung der Totzeit des Elements 3.
DT_{3}

\sum

UNIVERSITÄT DUISBURG-ESSEN

Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik
Lehrstuhl Steuerung, Regelung und Systemdynamik
Systemdynamik

Aufgabe 2 (13 Punkte)
a) (7 Punkte)

In Abb. 2.1 ist das Blockschaltbild einer nichtlinearen Regelstrecke dargestellt.

Abbildung 2.1: Nichtlineare Regelstrecke
Die Systemantwort des linearen Teilsystems G_{1} auf das Eingangssignal $u_{1}(t)=t \cdot 1(t)$ lautet $y_{1}(t)=2 \cdot 1(t)$. Das nichtlineare Teilsystem N_{2} wird durch

$$
\begin{equation*}
\ddot{Y}(t) \dot{Y}^{2}(t)+\dot{Y}(t) \sqrt{Y(t)}-Y(t) U(t)+Y(t)-6=0 \tag{2.1}
\end{equation*}
$$

beschrieben.
2a) i) (1 Punkt)
Bestimmen Sie die E/A-Beschreibung (Gleichung) des linearen Teilsystems G_{1}.

$$
y_{1}=2 v_{1}
$$

Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik
Lehrstuhl Steuerung, Regelung und Systemdynamik
Systemdynamik

2a) ii) (3 Punkte)
Linearisieren Sie die Gleichung 2.1 um den allgemeinen Arbeitspunkt $\left(\ddot{Y}_{0}, \dot{Y}_{0}, Y_{0}, U_{0}\right)$.

$$
\dot{y}_{0} \cdot \ddot{y}+\left(2 \ddot{y}_{0} \dot{y}_{0}+\sqrt{y_{0}}\right) \cdot \dot{y}+\left(\frac{\dot{y}_{2}}{2 \sqrt{1}}-u_{0}+1\right) \cdot y-y_{0} \cdot u=0
$$

UNIVERSITÄT DUISBURG-ESSEN

Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik Lehrstuhl Steuerung, Regelung und Systemdynamik
Systemdynamik
Seite 27
iii) (3 Punkte)

Bestimmen Sie die E/A-Beschreibung (Gleichung) des linearisierten Teilsystems N_{2} für den Arbeitspunkt $\ddot{Y}_{0}=0, \dot{Y}_{0}=1, Y_{0}=4, U_{0}=0,25$. Um welchen Systemtyp handelt es sich?

$$
\ddot{y}+2 \dot{y}+y=4 u
$$

UNIVERSITÄT DUISBURG-ESSEN

Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik
Lehrstuhl Steuerung, Regelung und Systemdynamik
Systemdynamik

2b) (6 Punkte)
Gegeben ist das Blockschaltbild in Abb. 2.2.

Abbildung 2.2: Blockschaltbild

2b) i) (1 Punkt)
Entscheiden Sie nach Eingangs-, Ausgangs- und Zwischengrößen bzw. ordnen Sie die vorhandenen Variablenbezeichnungen $u(t), y(t), x_{1}(t), x_{2}(t), x_{3}(t)$ entsprechend zu.

$$
\begin{aligned}
& \text { U: Eingangsgröße } \\
& y: \text { Pusjangsgnößl } \\
& x_{1}, x_{2}, x_{3} \text { : Znischengröße }
\end{aligned}
$$

UNIVERSITÄT DUISBURG-ESSEN
Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik
Lehrstuhl Steuerung, Regelung und Systemdynamik
Systemdynamik
20. April 2021

Seite 29
2b) ii) (4 Punkte)
Entwickeln Sie aus dem Blockschaltbild die zugeordnete Zustandsraumbeschreibung. Wie lauten die Matrizen A, B, C, wenn der Zustandsvektor $x(t)=\left[\begin{array}{lll}x_{1}(t) & x_{2}(t) & x_{3}(t)\end{array}\right]^{T}$ gewählt wird.

$$
\left.\begin{array}{rl}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]} & =\underbrace{\left[\begin{array}{lll}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 2 & 0
\end{array}\right]}_{\text {H }}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\underbrace{\left[\begin{array}{l}
1 \\
0 \\
-1
\end{array}\right]}_{B} 0 \\
y=\left[\begin{array}{lll}
0 & -2 & -2
\end{array}\right] \\
\underbrace{}_{C} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

UNIVERSITÄTT DUISBURG-ESSEN
Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau und Verfahrenstechnik Lehrstuhl Steuerung, Regelung und Systemdynamik Systemdynamik

2b) iii) (1 Punkt)
Handelt es sich bei dem angegebenen System um ein SISO, ein MIMO, ein SIMO oder ein MISO System? Begründen Sie Ihre Antwort.

$$
\begin{aligned}
& \text { B hat eine Spalte } \\
& C \text { hat eine zeile } \\
& \Rightarrow S / S O
\end{aligned}
$$

