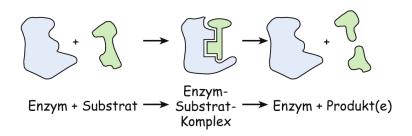

Enzymkinetik

Jan Kazalski und Anil Gaba

Was sind Enzyme?

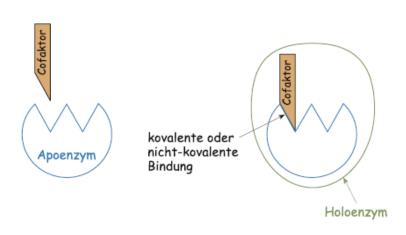


Progress of the reaction


Figure 5-5 Brock Biology of Microorganisms 11/e © 2006 Pearson Prentice Hall, Inc.

- -Proteine
- -fungieren als Katalysatoren
- -verringern die Aktivierungsenergie
- -beschleunigen Knüpfung und Modifikation kovalenter Bindungen
- -beschleunigen lediglich eine Reaktion
- -Enzyme werden nicht verbraucht
- -beschleunigen chemische Reaktion um Faktor 10^8 10^20

Wie funktioniert ein Enzym?


6.12 Das Induced-Fit-Modell.

● **6.11** Aktives Zentrum – katalytische Triade aus Aspartat, Histidin, Serin – von Chymotrypsin (Gegenüberstellung von [a] Primär- und [b] Tertiärstruktur).

- -Schlüssel-Schloss-Prinzip
- -Substrat bindet an das "aktive Zentrum" des Enzyms
- -Konformationsänderung des aktiven Zentrums
- -Enzyme sind substratspezifisch
- -das "aktive Zentrum" wird von Aminosäuren gebildet

Cofaktoren

4 6.15 Holoenzym und Apoenzym.

- -"Helfer" zum Erreichen der vollen katalytischen Aktivität
- -binden ebenfalls an das "aktive Zentrum"
- -häufig bei der Übertragung von Elektronen, Protonen oder ganzen chemischen Gruppen beteiligt
- -in Form von anorg. Metall-Ionen

oder

Nicht-Protein-Moleküle (Coenzym)

Cofaktoren (anorg. Metallionen)

TABLE 6-1 Some Inorganic Elements That Serve as Cofactors for Enzymes

Cu²⁺ Cytochrome oxidase

 ${\rm Fe^{2+}}$ or ${\rm Fe^{3+}}$ Cytochrome oxidase, catalase, peroxidase

K⁺ Pyruvate kinase

Mg²⁺ Hexokinase, glucose 6-phosphatase,

pyruvate kinase

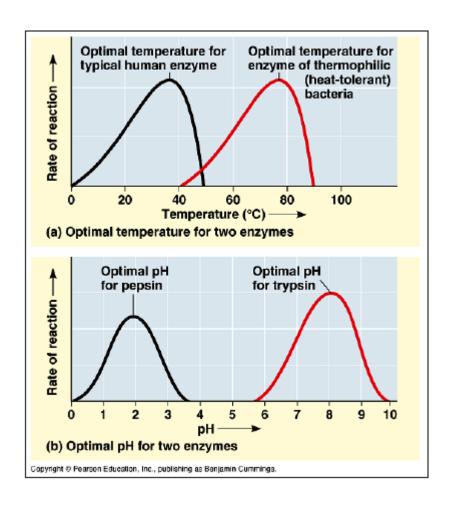
Mn²⁺ Arginase, ribonucleotide reductase

Mo Dinitrogenase

Ni²⁺ Urease

Se Glutathione peroxidase

Zn²⁺ Carbonic anhydrase, alcohol


dehydrogenase, carboxypeptidases

A and B

Coenzyme

Coenzyme	Examples of chemical groups transferred	Dietary precursor in mammals
Biocytin	CO ₂	Biotin
Coenzyme A	Acyl groups	Pantothenic acid and other compounds
5'-Deoxyadenosylcobalamin (coenzyme B ₁₂)	H atoms and alkyl groups	Vitamin B ₁₂
Flavin adenine dinucleotide	Electrons	Riboflavin (vitamin B ₂)
Lipoate	Electrons and acyl groups	Not required in diet
Nicotinamide adenine dinucleotide	Hydride ion (:H-)	Nicotinic acid (niacin)
Pyridoxal phosphate	Amino groups	Pyridoxine (vitamin B _s)
Tetrahydrofolate	One-carbon groups	Folate
Thiamine pyrophosphate	Aldehydes	Thiamine (vitamin B ₁)

Umwelteinflüsse beinflussen die Enzymaktivität

-Enzymaktivität ist pH- und Temperaturabhängig

Enzymkinetik

Leonor Michaelis 1875–1949

Maud Menten 1879–1960

- -befassten sich mit dem Mechanismus einer Enzymreaktion
- -"in vitro" mit gereinigten Enzymen
- betrachteten den zeitlichen Ablauf enzymatischer Reaktionen im Zusammenhang mit der Konzentration der Produkte und Edukte

Michaelis-Menten-Kinetik

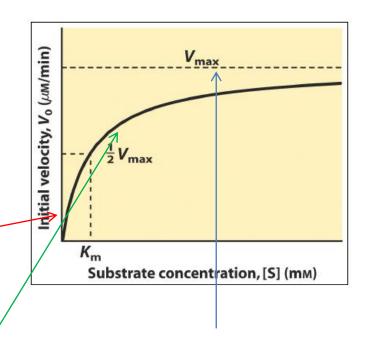
$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightarrow} E + P$$

reversibel und schnell ablaufend

-nicht reversibel und langsam ablaufend -Die Affinität des Enzyms für das Produkt beträgt null → keine Rückreaktion

Geschwindigkeits- v =
$$\frac{\Delta[P]}{\Delta t}$$
 = $k_2 \times [ES]$

Reaktion 1. Ordnung


Wichtig: Die Reaktionsgeschwindigkeit einer enzymkatalysierten Reaktion hängt unter den Bedingungen einer Michaelis-Menten-Kinetik von der Konzentration des Enzym-Substrat-Komplexes ab.

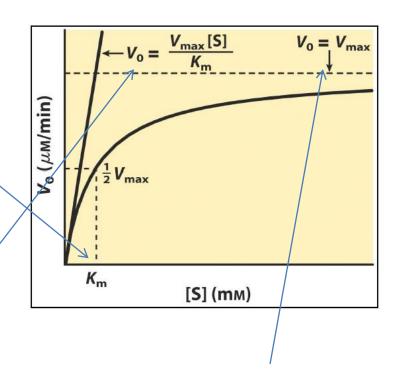
Michaelis-Menten-Diagramm

Enzymkonzentration konstant:

→enzymatische Reaktion abhängig von der Substratkonzentration

Initialphase: wenig Substrat, daher wenig Enzymsubstrat-Komplexe
→ Reaktionsgeschw. gering

Mit zunehmender Substratkonzentration steigt auch die Reaktionsgeschwindigkeit → Bildung von immer mehr ES

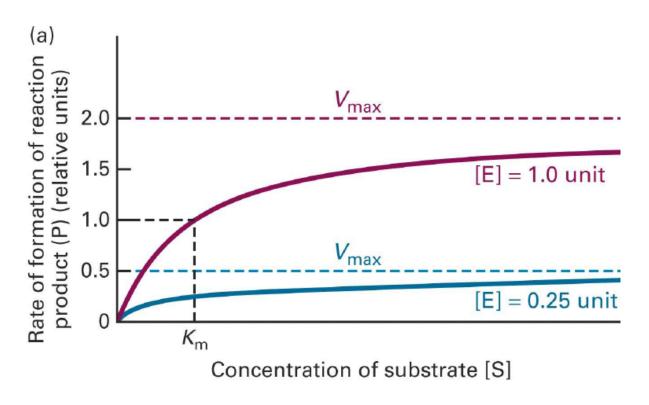

Enzyme gesättigt →
maximale Umsatzgeschw.
→Steigerbar nur durch
Enzymzugabe

Michaelis-Menten-Gleichung

$$V_0 = V_{\text{max}} \times \frac{[S]}{[S] + K_M}$$

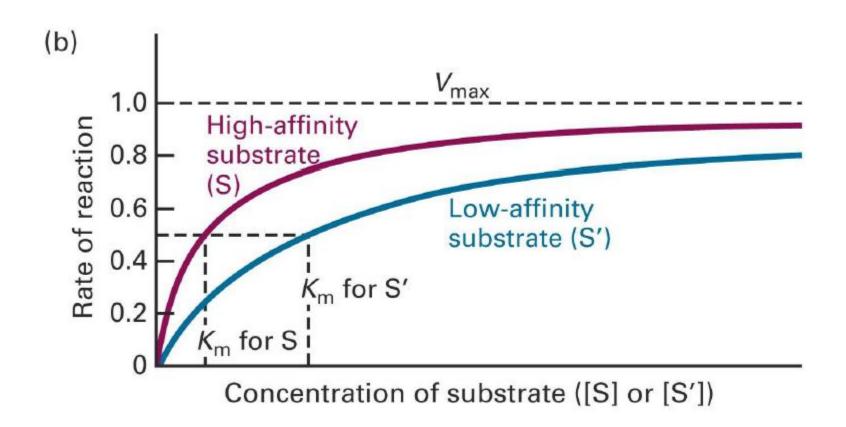
Michaelis-Menten Konstante K_M

-die Substratkonzentration bei der die Geschwindigkeit $\frac{1}{2}$ V_{max} beträgt



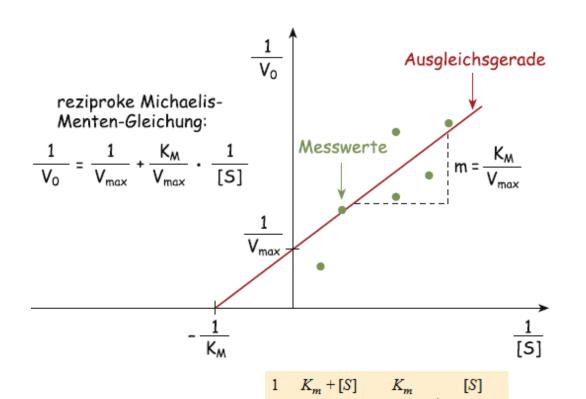
[S] sehr gering
K_M >> [S] → Gleichung
vereinfacht sich

[S] sehr hoch


K_M << [S] → Gleichung vereinfacht sich

Zusammenhang zwischen Enzymkonzentration und V_{max}

1 Unit = 1μ mol (Substratumsatz) / Minute


Umsatz zweier Substrate mit dem selben Enzym

Lineweaver-Burk-Diagramm

 $V_{\max}\left[S\right] = V_{\max}\left[S\right] = V_{\max}\left[S\right]$

 $V_{\rm max}$ [S] $V_{\rm max}$

- -doppelt-reziproke (Kehrwert) Auftragung (1/V₀ gegen 1/[S])
- -Gerade statt Hyperbel
- -V_{max} und K_m können wesentlich genauer bestimmt werden

Quellenverzeichnis

- Skript "Einführung in die Biochemie" (SS11) Prof. Siebers
- Florian Horn, "Biochemie des Menschen" 4. Auflage (2005)
- Joachim Rassow, Karin Hauser, Roland Netzker, Rainer Deutzmann, "Duale Reihe Biochemie" 2. Auflage (2008)
- Ulf Dettmer, Malte Folkerts, Eva Kächler, Andreas Sönnichsen, "Intensivkurs Biochemie" 1. Auflage (2005)
- http://www.chemgapedia.de/vsengine/vlu/vsc/de/ch/8/bc/vlu/michaelis_menten_gleichung.vlu/Page/vsc/de/ch/8/bc/kinetik/lineweaver_burk.vscml.html am 19.10.2011