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Quantum polyspectra approach to the dynamics of blinking quantum emitters
at low photon rates without binning: Making every photon count
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The blinking statistics of quantum emitters and their corresponding Markov models play an important role
in high-resolution microscopy of biological samples as well as in nano-optoelectronics and many other fields
of science and engineering. Current methods for analyzing the blinking statistics like the full counting statistics
and the Viterbi algorithm break down for low photon rates. We present an evaluation scheme that eliminates
the need for both a minimum photon flux and the usual binning of photon events which limits the measurement
bandwidth. Our approach is based on higher-order spectra of the measurement record which we model within
the recently introduced method of quantum polyspectra from the theory of continuous quantum measurements.
By virtue of this approach we can determine on- and off-switching rates of a semiconductor quantum dot at light
levels 1000 times lower than in a standard experiment and 20 times lower those than achieved with a scheme
from full counting statistics. Thus, a very powerful high-bandwidth approach to the parameter-learning task of
single-photon hidden Markov models is established with applications in many fields of science.
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I. INTRODUCTION

The light emission of so-called quantum emitters is dom-
inated by the specific quantum mechanics of the emitting
system, which often can be described by just a few quan-
tum states. Their single-photon emission clearly distinguishes
them from thermal light sources, such as light bulbs, and
coherent sources, such as lasers, via their photon statistics [1].
Quantum emitters play an important role in many fields of sci-
ence. In biology, chromophores behave as quantum emitters
in fluorescence microscopy. They are used to label proteins
for the investigation of protein dynamics. Proteins switch-
ing between different configurations can be characterized via
the changing brightness of chromophores, which is strongly
influenced by Förster resonance transfer [2–5]. In physics,
semiconductor quantum dots (QDs) are quantum emitters that
are currently being investigated as single-photon sources in
quantum information devices [6–9] and as probes of charg-
ing dynamics [10–12]. Figure 1(a) displays the schematics
of a semiconductor quantum dot whose incoherent charging
dynamics is investigated by time-resolved detection of single
photons. In the case of high photon rates the bright and dark
states of the blinking quantum dot can be clearly distinguished
after binning of single-photon clicks over a finite time interval
[see, e.g., Fig. 1(b)]. The resulting measurement trace exhibits
random telegraph noise whose statistics coincides with the
statistics of the charging dynamics. The theory of hidden
Markov models (HMMs) [3], the full counting statistics (FCS)
of transport theory [13], and also quantum polyspectra [14]
provide methods for fitting system parameters to simple mod-
els that capture the essence of the stochastic dynamics. The
limitations of binning were recently discussed in the context

of the FCS by Kerski et al. [15]. They found that the measur-
able bandwidths can, in their scheme, be increased only by a
higher photon rate.

Therefore, the following challenging question appears in
the case of low photon rates [Fig. 1(c)]: Is it fundamentally
possible to infer the blinking statistics from photon-click
events if the photon rates drop below the switching rate of
the quantum dot, i.e., if sometimes no photon is detected even
when the quantum dot is in the bright state? Obviously, no
sensible telegraph signal can be obtained from binning single-
click events [see Figs. 1(c) and 2(a)]. In the following, we will
give a positive answer to the question by modeling the system
of a quantum dot and single-photon detector within the theory

FIG. 1. (a) A single semiconductor quantum dot coupled to a
charge reservoir switches incoherently between a bright (charged)
and dark (neutral) state due to carrier tunneling. (b) Single pho-
tons of the resonance fluorescence appear as stochastic peaks in the
measurement record. The bright- and dark-state dynamics is directly
visible only at high photon rates. (c) Access to charging statistics at
low photon rates via higher-order spectra of the detector output is
demonstrated in this work.

2469-9926/2024/109(6)/062210(10) 062210-1 ©2024 American Physical Society

https://orcid.org/0000-0001-6701-830X
https://orcid.org/0000-0001-5947-0400
https://orcid.org/0000-0002-5676-4988
https://orcid.org/0000-0002-2871-7789
https://ror.org/04tsk2644
https://ror.org/04mz5ra38
https://ror.org/04tsk2644
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.062210&domain=pdf&date_stamp=2024-06-10
https://doi.org/10.1103/PhysRevA.109.062210


M. SIFFT et al. PHYSICAL REVIEW A 109, 062210 (2024)

FIG. 2. (a) Samples of the measurement record for photon fractions of α = 1, 10−1, 10−2, 10−3. Binning into 100-μs intervals was used to
visualize single-photon events. (b)–(d) Experimental polyspectra up to fourth order obtained without binning (Appendix A) and their analytic
counterparts, which follow from a fitting procedure to quantum polyspectra of a Markov model. Spectra S(3)

z and S(4)
z are given in units of

kHz−2 and kHz−3, respectively. The overall backgrounds found in S(3)
z and S(4)

z were subtracted in the graphs for better visibility of the spectral
structure on top.

of continuous quantum measurements. Recent advances in the
theory established a connection between system properties (in
our case, transition rates) and the continuous measurement of
an observable (the presence of the photon) in terms of its
higher-order spectra [14,16–19]. Such quantum polyspectra
provide here the key for solving the problem. The present
work extends our previous scheme for analyzing quantum-dot
dynamics from the continuous-measurement regime to the
single-photon regime, establishing a very general alternative
to the FCS [14,20,21].

This paper is organized as follows. Section II shows that
higher-order spectra of single-photon data retain many fea-
tures even for decreasing photon rates, nurturing the hope
that system statistics can be recovered even at very low
photon rates. In Sec. III we briefly review how continuous
Markov models are used to model random telegraph noise
and what approaches have been used in the past to recover
transition rates from experimental data. We show how a

Markov model for telegraph noise can be transformed into a
modified Markov model which exhibits single-photon events.
We explain how theoretical polyspectra of this model can be
calculated by mapping it onto a quantum model which then
can be treated within the very general framework of so-called
quantum polyspectra. In Sec. IV we use real-world data to test
our approach and find that transition rates can be extracted
with the polyspectral approach even in cases of extremely
low photon rates. The relation of our work to the theory
of Cox processes from mathematical statistics is discussed
in Sec. V [22].

II. HIGHER-ORDER SPECTRA
OF SINGLE-PHOTON DATA

In this work we aim to analyze single-photon data mea-
sured by Kurzmann et al. on a single InAs quantum dot
embedded in a p-i-n diode matrix [10,23]. Figure 2(a)
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shows a small part of a measurement trace of 6-min
duration. Single-photon clicks with time stamps t j were
binned into 100 µs intervals here only for display. However, no
binning is required to calculate the polyspectra. The number
of clicks was artificially reduced to a photon fraction of α =
10−1, 10−2, and 10−3 by randomly deleting any single-click
event with a probability of 1 − α from the original data set
(see lower rows) using a standard random-number generator.
Clearly, the telegraph-noise behavior visible in the first row
gets completely compromised at reduced photon rates, rais-
ing the question of whether the underlying on-off behavior
of the quantum emitter can still be inferred from such data.
Figure 2(b) shows power spectra S(2)

z (ω) calculated from the
measurement trace z(t ) without binning (see Appendix A).
While a spectrally flat background increases as α decreases,
we interestingly find that a peak at zero frequency prevails
independently of the photon fraction α. Clearly, some infor-
mation about the measured system survives even for strong
photon loss. It is known that the usual power spectrum S(2)

z (ω)
reveals only the sum of transition rates in the case of a two-
state model, while their separation requires a higher-order
spectrum [14]. Specifically, S(3)

z contains information about
the difference between the transition rates, while S(4)

z depends
on higher-order polynomials of the transition rates. We are
therefore also interested in higher-order spectra S(3)

z and S(4)
z

[Figs. 2(c) and 2(d)] [14,16,18]. Similarly to S(2)
z , the higher-

order spectra show an increasing background for decreasing
photon fraction α. Nevertheless, we will show in Secs. III
and IV that a simultaneous fitting of all spectra with model
spectra will correctly recover the on-off transition rates of
the quantum emitter. The model spectra obtained from the
fitting procedure are shown in Fig. 2 along with the measured
spectra.

Brillinger’s polyspectra generalize the usual power spec-
trum S(2)

z (ω) ∝ 〈z(ω)z∗(ω)〉 of a stochastic process z(t ) to
spectra that are of higher orders of z(ω), with z(ω) =∫

z(t )eiωt dt being the Fourier transform of z(t ) [24]. The
definition of the polyspectra,

2πδ(ω1 + · · · + ωn)S(n)
z (ω1, . . . , ωn−1)

= Cn(z(ω1), . . . , z(ωn)), (1)

is based on the nth-order cumulant Cn, where

C2(x, y) = 〈xy〉 − 〈x〉〈y〉,
C3(x, y, z) = 〈(x − 〈x〉)(y − 〈y〉)(z − 〈z〉)〉. (2)

The fourth-order cumulant can be found in Refs. [16,25].
The bispectrum S(3)

z is related to 〈z(ω1)z(ω2)z∗(ω1 + ω2)〉
and exhibits a nonvanishing imaginary part in the case
of broken time-inversion symmetry of z(t ). A cut
through the trispectrum S(4)

z (ω1, ω2,−ω1) is used in
this paper. This two-dimensional spectrum is related to
〈z(ω1)z∗(ω1)z(ω2)z∗(ω2)〉−〈z(ω1)z∗(ω1)〉〈z(ω2)z∗(ω2)〉 and
can be interpreted as a correlation spectrum of the intensity
fluctuation of z(t ) [26]. A recipe for the estimation of
polyspectra from data can be found in Appendix A. Its
implementation is included in our SIGNALSNAP software
library and was used here to calculate experimental
polyspectra [27].

FIG. 3. Continuous Markov model with states A and B and ran-
dom telegraph noise with corresponding signal levels UA and UB.

III. CONTINUOUS MARKOV MODELS

In this section, Markov models are used to model
single-photon measurement traces. Analytical expressions for
polyspectra of such traces are found within the framework of
quantum polyspectra [16].

The theory of quantum polyspectra was originally devel-
oped for calculating polyspectra of continuous measurements
on general open quantum systems. Here, we apply the frame-
work to continuous Markov systems, which can be viewed as
quantum systems showing only incoherent dynamics without
any quantum coherence. Retaining the full theory allows for
easy future adaption of our method to quantum systems which
exhibit coherent dynamics of, e.g., a precessing electron spin
[18]. A specific theory of polyspectra for continuous Markov
models would, however, be numerically less demanding and
is currently being developed and implemented in our group.
Polyspectra play a key role in Sec. IV, where they are fitted
to experimental polyspectra for eventually finding system pa-
rameters with which the statistics of measurement traces can
be matched.

Markov models have found application in science to de-
scribe systems that stochastically switch between a number
of discrete states. The switching rates towards a new state
depend only on the actual state. Therefore, the future behavior
of Markov models does not depend on the past, making them
so-called memoryless models. Figure 3(a) depicts a simple
system that switches between two states, A and B, with transi-
tion rates γ1 and γ2. The observation of a corresponding real-
world system would give rise to a time-dependent signal U (t )
switching between output signals Ua and Ub [see Fig. 3(b)].
The challenge posed by such a measured trace is to find
the corresponding HMM. In biology, a number of related
methods for finding model parameters are in use, such as
the Viterbi algorithm, the forward algorithm, and the Baum-
Welch-algorithm, to name but a few [3,28,29]. They have in
common the fact that model parameters are varied with the
aim to increase the probability of reproducing the measured
trace U (t ). While the probability of obtaining a specific mea-
surement outcome is, of course, extremely small, this quantity
is still very valuable for judging the quality of a Markov
model. The algorithms differ mostly in their ability to cope
with measurement noise. A common drawback of all the
algorithms is that the full measurement trace must be stored
and evaluated every time a new set of model parameters is
investigated. This limits the applicability of such algorithms to
short measurement traces. This problem becomes even larger
for HMM methods in which, instead of binned photon sig-
nals, single-photon events are considered [4]. The polyspectra
approach presented here does overcome this limitation.
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FIG. 4. Modified Markov model describing both the stochastic
quantum-dot occupation and the stochastic emission of a fluores-
cence photon in the unoccupied state.

Deliberately long measurement traces are evaluated only once
in terms of their polyspectra, which require much less storage
memory than the initial measurement trace. The polyspectra,
rather than the full measurement trace, enter the subsequent
fitting routines for reconstructing the Markov model. In the
field of quantum electronics, a pure Markov approach is often
sufficient to describe the observed system dynamics and the
statistics of corresponding measurement records. However, a
completely different tool set for analyzing data was developed
in this field. The so-called full counting statistics relies on
the identification of quantum jumps in the measurement trace
and treats quantities like the probability P(N, t ) of N electrons
leaving a quantum dot in time t [13,30–32]. Recently, factorial
cumulants based on P were shown to be useful for analyzing
compromised binned data, for which small photon numbers
can lead to randomly appearing wrong counts of jump events.
Kleinherbers et al. evaluated the same data as in this paper
at a photon fraction of α = 2×10−2 [20] based on factorial
cumulants of the FCS [33,34]. Here, we push the limit to
α = 10−3 without even compromising temporal resolution by
binning.

A. Markov description of single-photon detection

The above Markov model sufficiently approximates the
appearance of a measurement trace that exhibits distinct levels
of photon intensities like in Fig. 3(b). The model, however,
breaks down in the case of, e.g., low laser illumination of
the chromophores when the photon rates become so low that
single-photon peaks appear in the measurement trace. Bin-
ning of photon events into longer time intervals cannot solve
the problem because larger time intervals may decrease the
temporal resolution so strongly that switching can no longer
be observed. To solve the problem, we integrate the appear-
ance of single photons into the Markov model (see Fig. 4).
State 1 represents the charged quantum dot (QD), which does
not show laser-induced fluorescence. Consequently, there is
no transition possible to state 2, which would represent the
charged dot and the presence of a photon in the detector.
The random uncharging of the QD at an average rate γout

is modeled by a transition to state 3, which represents the

uncharged QD. The uncharged QD does exhibit fluorescence
and emits photons at an average rate γph which is modeled
by a transition to state 4, which represents the uncharged
QD and the presence of a photon in the detector. The photon
disappears from the detector at an average detection time γdet,
giving rise to a transition from state 4 back to state 3. While
the photon is present in the detector, the QD may change its
charging state, giving rise to transitions between state 4 and
state 2 with the same rates as in the case of an absent photon
(transitions between state 1 and state 3). Finally, the photon
also disappears from the detector in the case of a charged
quantum dot (state 2) at rate γdet, which is represented by a
transition to state 1. The model is constructed in such a way
that the overall occupation dynamics of the QD is influenced
by neither γph nor γdet. The average photon lifetime in the
detector is also not influenced by the switching dynamics.
We emphasize that the resulting peaks in the measurement
trace vary in length as the photon lifetime is exponentially
distributed according to γdet.

B. Quantum polyspectra of Markov dynamics

In this section we show how Markov dynamics can be
treated via a quantum-mechanical master equation. Higher-
order polyspectra of Markov dynamics follow from the
powerful framework of continuous quantum measurement
theory, for which, recently, very general expressions for
polyspectra were found [16,17]. We represent the four
Markov states of Fig. 4 by quantum states |1〉, |2〉, |3〉,
and |4〉. A Markov system in state | j〉 with probability pj

at time t can then be represented by the density matrix
ρ(t ) = ∑

j ρ j j (t )| j〉〈 j|, where ρ j j = p j . The dynamics of the
Markov system is given by the transition rates between the
states. A transition from, e.g., state |2〉 to state |4〉 is repre-
sented by a jump operator d = |4〉〈2|. The equation of motion
for the density matrix is then given by

ρ̇ = γD[d](ρ), (3)

where γ is the transition rate and

D[d](ρ) = dρd† − (d†dρ + ρd†d )/2 (4)

is a superoperator acting on the density matrix describing the
incoherent transition between two states [35]. The dynam-
ics of the full Markov model in Fig. 4 is reformulated with
the help of a Liouvillian L acting on the density matrix. A
compact formulation for L is obtained after introducing the
annihilation operator for the electron

a = |3〉〈1| + |4〉〈2| (5)

and the annihilation operator for the photon

b = |3〉〈4| + |1〉〈2|. (6)

The equation of motion

dρ = γinD[a†](ρ) dt + γoutD[a](ρ) dt

+γphD[(1 − a†a)b†](ρ) dt + γdetD[b](ρ) dt

= Lρ dt (7)

covers all seven transitions depicted in Fig. 4. A short cal-
culation yields, for the damping operator of the third term,
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(1 − a†a)b† = |4〉〈3|, i.e., a transition from state |3〉 to |4〉 at
rate γph as required by our model. Equation (7) describes how
the probabilities pj of finding the system in state j change
over time. We emphasize that ρ(t ) always remains diagonal,
unlike in the general quantum case, where coherence between
states leads to nonzero off-diagonal elements of ρ(t ). The
usual master equation does not reproduce the actual stochastic
behavior of the system, nor can it directly be used to simulate
measurement traces z(t ) (telegraph noise) like the trace shown
in Fig. 3(b). The so-called stochastic master equation (SME)
is, however, able to describe both the measurement outcome
z(t ) and the stochastic behavior of the system ρ(t ) [36–47].
Suppose the detector associates an output voltage Uj with
state | j〉; then the measurement operator is within the stochas-
tic master-equation approach given by

A =
∑

j

Uj | j〉〈 j|. (8)

The measurement output is given by

z(t ) = β2Tr[ρ(t )(A + A†)/2] + β	(t )/2, (9)

where the output scales with the measurement strength β2 and
	(t ) is white background noise, where 〈	(t )	(t ′)〉=δ(t−t ′).
The equation reflects the fact that a weak measurement of A
gives information about A that is partly hidden behind back-
ground noise. In this way a collapse of the quantum state into
a definite eigenstate of A is avoided. In our case of Markov
dynamics, the switching behavior (random telegraph noise) is
obtained in the strong-measurement limit β � 1, where the
system reveals its state immediately and the detector output
z(t ) shows the corresponding voltage level β2Uj [43].

During measurement according to the SME the system
behaves as (notation from [18])

dρ = Lρ dt + β2D[A](ρ) dt

+β(Aρ + ρA† − Tr[(A + A†)ρ]ρ) dW, (10)

where the last line describes stochastic measurement back-
action driven by the Wiener process W , where, formally,
Ẇ = 	(t ). Together with the last term in the first line, the
equation describes a collapse of the quantum system into an
eigenstate of A + A†. The rate of the collapse scales with β2.
According to continuous-measurement theory, the spectra of
z(t ) of a system that is observed in steady state are given in
terms of A and L′ = L + β2D[A] [16]. In the case of pure
Markov dynamics, where the density matrix ρ(t ) is always
diagonal, it is easy to show that the second term in the first line
disappears and L′ = L. Figure 5 shows a simulated measure-
ment trace z(t ) of the quantum-dot Markov model for γin =
0.27 kHz, γout = 0.8 kHz, γph = 298 kHz, γdet = 5000 kHz,
β2 = 25 000 kHz, and measurement operator A = |2〉〈2| +
|4〉〈4|. Traces z(t )/β2 were calculated using the QUTIP library
[48]. Note that the single-photon events appear as peaks of
different lengths and weights. This is a consequence of our
Markov model, in which the photon can be detected for time
intervals of stochastic lengths governed by the photon de-
cay rate γdet. The trace exhibits several peaks that do not
reach a value of 1. This is a well-known consequence of
the finite measurement strengths β2. Only in the ultrastrong-
measurement limit can a trace exhibiting only values of 1

FIG. 5. Simulated detector output z(t )/β2 obtained from solving
the stochastic master equation, Eqs. (9) and (10). A clear telegraph-
like behavior of the dark and bright states is observed. Single-photon
events appear as peaks of stochastically varying temporal length
when zooming into a 1-ms interval of the measurement trace (see
inset). The stochastic weights of the peaks are regarded via Monte
Carlo resampling in the comparison of single-click data with model
spectra based on the SME (see Appendix A).

and 0 be reached (apart from so-called spikes with vanishing
weight [49]). In contrast, experimental measurement records
store the photon arrival times t j with no information about the
peak areas. This discrepancy between experimental records
and the Markov model is taken care of by a Monte Carlo
resampling procedure for calculating polyspectra from single-
photon data (see Appendix A).

The analytical higher-order spectra S(n)
z of z(t ) are given in

terms of the propagator [16]

G(τ ) = eL
′τ�(τ ) (11)

with the Heaviside step function �(τ ), the steady state

ρ0 = G(∞)ρ(t ), (12)

and the measurement superoperator

Ax = (Ax + xA†)/2. (13)

The density operator is represented for calculations as an N ×
N matrix for N Markov states. The superoperators act linearly
on such matrices, requiring a representation by N4 numbers.
Very compact expressions follow after the introduction of
the modified propagator G ′(τ ) = G(τ ) − G(∞)�(τ ) and the
modified measurement operator A′x = Ax − Tr(Aρ0)x. The
authors of [16] found

S(2)
z (ω) = β4{Tr[A′G ′(ω)A′ρ0] + Tr[A′G ′(−ω)A′ρ0]}

+β2/4, (14)

where G ′(ω) = ∫
G ′(τ )eiωτ dτ is the Fourier transform of

G ′(τ ). The third-order spectrum is

S(3)
z (ω1, ω2, ω3 = −ω1 − ω2)

= β6
∑

{k,l,m}∈prm.{1,2,3}
Tr[A′G ′(ωm)A′G ′(ωm + ωl )A′ρ0], (15)
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where the sum accounts for all six permutations (prm.) of
the indices of the ω j’s [50]. The fourth-order spectrum is
given in Appendix B. We state for completeness the first-order
polyspectrum

S(1)
z = 〈z(t )〉 = β2Tr[Aρ0], (16)

which is simply the expectation value of the measurement
operator. Usually, S(1)

z is nonzero, as can be seen from Fig. 5,
where all peaks have a positive weight.

IV. ANALYSIS OF A QUANTUM EMITTER

In this section we apply our theory to the analysis of single-
photon data measured by Kurzmann et al. on a single InAs
quantum dot embedded in a p-i-n diode matrix [10,23]. Ran-
dom in and out tunneling of electrons switches the quantum
dot between a charged and uncharged state (see Fig. 1). Our
aim is to recover the in- and out-tunneling rates γin and γout

for the case of a strongly reduced fraction α of photons [see
Figs. 2(a) and 4]. Experimental polyspectra up to fourth order
are calculated from the photon arrival times using the recipe
in Appendix A. The spectra are displayed in Figs. 2(b)–2(d)
along with model spectra that were calculated by fitting the
corresponding quantum polyspectra (for details see below).
The power spectrum S(2) features a peak at zero frequency
on top of a flat background. The background arises from the
temporally short photon clicks, which in the frequency do-
main are much broader than the spectral features related to the
quantum-dot dynamics. The background increases relative to
the height of the zero-frequency peak as the photon fraction α

decreases. Similarly, the bispectrum S(3) and trispectrum S(4)

also exhibit an overall flat positive background and some ad-
ditional structure. This background is subtracted in Figs. 2(c)
and 2(d) for better visualization of the structure.

The model spectra S(1), S(2), S(3), and S(4) are fitted simulta-
neously to their experimental counterparts. The model spectra
are obtained by numerically evaluating Eqs. (16), (14), (15),
and (B1), respectively, for the measurement operator A and
the Liouvillian L [Eq. (7)], which depends on the parameters
γin, γout, and γph. All model spectra were calculated using our
QUANTUMCATCH software library [51]. An analytic evaluation
is possible only for very simple Liouvillians L which can
be diagonalized algebraically. The experimental spectra S(4)

and S(3) contribute N2 data points, where N is the number
of points used to discretize the spectrum along one axis. The
spectrum S(2) contributes N data points, and S(1) contributes
one data point. The weight of each data point that enters the
fitting procedure is given by its inverse error (square root
of the variance), which is estimated during the calculation
of the measured spectra. Data points that appear twice due
to the symmetry of the spectra are counted only with half
their weight. Overall, only the parameters γin and γout and
the measurement strength β need to be fitted. The photon
rate γph is not an independent fitting parameter. Since γ −1

in
is the average time in the bright state of the quantum dot
and γ −1

out is the average time in the dark state, the relation

γph
γ −1

in

γ −1
in +γ −1

out
= Nclick/Tmeasure allows us to estimate γph, where

Nclick is the number of clicks measured during the overall
measurement time Tmeasure. The detector rate γdet is fixed to

105 kHz; i.e., it is much faster than the expected photon
emission rate. This ensures that the click peak is much shorter
than the typical time interval between the emissions of two
photons. Moreover, dead times due to the presence of a photon
which blocks the emission of a second photon are reduced.
The area under a single-photon peak in the simulated z(t ) is
the product of the peak height β2 (compare Fig. 5) and the
average temporal length of the peak, which is given by the
inverse detector transition rate γ −1

det . The evaluation scheme in
Appendix A assumes unity for the average peak area. In the
case of Markov dynamics, the measurement strength β2 does
not enter the Liouvillian L but allows for the required scaling
of z(t ) and the quantum polyspectra (see Sec. III B). The
fitting procedure will therefore always yield a β2 ≈ γdet. The
overall structures of the quantum polyspectra do not change
for a higher rate γdet as the spectral features of a single click
are unstructured and always much broader than the features of
the relevant on-off dynamics of the quantum emitter.

Figure 6 shows cuts through the experimental spectra S(3)

and S(4) along with the power spectrum S(2) for photon frac-
tions between α = 1 and α = 10−3. The corresponding 2σ

errors appear as error bands in the plots. All fits of the full
spectra are located within the vicinity of the 2σ error bands.
This confirms that our Markov model correctly captures all
system properties contained in the measured data. The relative
noise on spectra S(2), S(3), and S(4) strongly increases with
the order of the spectrum. Such behavior is known for all
cumulant-based quantities [52]. Since S(5) or any spectrum of
higher order would exhibit much more noise, it is neither nec-
essary to calculate such spectra nor necessary to include them
in an evaluation procedure. Figure 7 shows the γin and γout

tunneling rates that can be determined from the experimental
spectra. To assess the reliability of these estimates, the errors
of the calculated values were determined by performing our
fitting routine on 10 different subsets of the total photon clicks
for each photon fraction α < 1. The average values of the
10 different pairs of tunneling rates are shown as dots. Their
standard deviations σ (α) appear as ±3σ error bars. Useful
estimates for the tunneling rates are obtained down to very
low photon fractions of α = 10−3.

Therefore, our method can determine transition rates even
when photon shot noise dominates the measured spectra. The
value of the larger tunneling rate also exhibits a larger error.
The dependences of the errors on the system parameters γin,
γout, and γph (which depend on α) and the overall measure-
ment time are not trivial because the analytic expressions for
S(1) to S(4), which are the fitting functions [see Eqs. (14)–(16)
and (B1)], depend on the factor exp(L′t ). This factor depends
nonlinearly on γin, γout, and γph, which appear as parameters
in the Liouvillian L′. We, nevertheless, have started to numer-
ically study the dependences of the errors. The problem is,
however, clearly beyond the scope of the present paper.

V. DISCUSSION

Here, we put our work in context with previous work on
quantum measurement theory and with the classical theory
of stochastic processes. The stochastic emission of photons
contains information on the quantum system. We recently
gave a theoretical treatment of such “random-time quantum
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FIG. 6. Cuts through experimental polyspectra up to fourth
order calculated (dotted line) for photon fractions α = 1, 10−1,

10−2, 10−3 in comparison with quantum polyspectra of the model
system used for fitting (solid line). The values have been offset for
visual clarity, as indicated by the dashed lines.

measurements” in terms of quantum polyspectra of general
systems that may exhibit both coherent quantum dynam-
ics and damping in the Markov approximation [18]. Their
polyspectra were shown to reveal the same information as
polyspectra obtained in a traditional continuous quantum
measurement. The present paper gives a successful example
for analyzing a real-world random-time measurement in the
pure Markov case.

In 1955, Cox introduced a class of classical stochastic pro-
cesses in which the rate γ (t ) of events (like photon clicks) is
itself a stochastic process [22]. The blinking dynamics treated
here is therefore a special case of a Cox process where γ (t )
originates from a Markov model. Our quantum polyspectra
approach is a solution to the question of how the stochastic
process γ (t ) can be fully characterized from the data of the
original Cox process. We expect that our approach will inspire
more work on the analysis of general Cox processes. We are

FIG. 7. Tunneling rates γin and γout are obtained from fitting
quantum polyspectra to experimental spectra. A photon fraction as
low as α = 10−3 is still sufficient to fully characterize the blinking
behavior. The mean values (dots) and error bars (±3σ ) are derived
from fits to 10 different subsets of the total photon clicks with the
same α. The estimated tunneling rates for α = 1 are shown as dashed
lines.

aware that our current notation is mostly accessible only to
researchers with a profound background in quantum mechan-
ics because the theory of quantum polyspectra is based on a
sound understanding of quantum-mechanical density matrices
and their master equations. While this general approach easily
allows for the inclusion of quantum dynamics (see [18]), it
asks, in the Markov case, for a simplified reformulation in
the language of continuous Markov models. Since ρ is al-
ways diagonal, it can be represented by a vector with only
N entries. The Liouvillian L (represented by N4 numbers)
will be replaced by a much simpler and numerically less
demanding N×N transition matrix. Also, the equations for
analytical polyspectra will no longer relate to quantum ob-
jects but, rather, to entities of Markov theory, making our
polyspectra approach more accessible to researchers from the
mathematical statistics community.

VI. CONCLUSION

In this study, we introduced an evaluation scheme that
leverages higher-order spectra of single-photon measurements
to analyze the blinking dynamics of quantum emitters. Our
method eliminates the notorious requirement for a minimum
light level, as the spectra can be calculated directly from the
single-photon measurements. This allows us to extract valu-
able information about blinking dynamics in regimes where
traditional methods based on photon binning would fail. Our
approach is highly versatile and can be readily generalized
to multistate Markov models and quantum systems exhibiting
coherent dynamics. This opens the door to exploring even
more complex quantum phenomena, such as the transition to
the quantum Zeno regime under single-photon measurements
[18].

Generally, our scheme does not compromise measurement
bandwidth or the accuracy of recovered system parameters
since the system dynamic frequencies that can be recov-
ered from single-photon measurements are not constrained
by the average photon rate. This enables the investigation of
systems previously considered beyond analytical reach and
could inspire the design of experiments deliberately in the
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low-photon-rate regime, where disturbances to quantum sys-
tems can be minimized. This innovation paves the way for new
research opportunities in nanoelectronics, quantum sensing,
and fluorescence microscopy.
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APPENDIX A: POLYSPECTRA OF SINGLE-PHOTON
MEASUREMENTS VIA MONTE CARLO RESAMPLING

The calculation of polyspectra from bandwidth-limited
data is based on the sampled data z j (see Ref. [14]). The
data stream z(t ) is divided into time intervals of length T
corresponding to N data points z(n)

j , where n is the number
of the interval and j = 0, . . . , N − 1. The Fourier coefficients

a(n)
k = T

N

N−1∑
j=0

g jz
(n)
j e2π i jk/N (A1)

are the basis for estimating the power spectrum

S(2)
z (ωk = 2πk/T ) ≈ NC2

(
a(n)

k ,
(
a(n)

k

)∗)
T

∑
j g∗

jg j
, (A2)

where g j are the coefficients of a so-called window func-
tion which improves the spectral resolution of the spectrum
[14,53] and C2(x, y) = 〈xy〉 − 〈x〉〈y〉 is the second-order cu-
mulant (identical to the covariance). The expectation values
〈·〉 refer to the ideal case of an infinite amount of data. In the
case of a limited number m of data pairs x and y, the esti-
mator c2(x, y) = m

m−1 (xy − x y) yields an unbiased estimate

of C2(x, y), where the overline (·) denotes the average of m
samples [52]. The famous prefactor 1/(m − 1) is known as
the Bessel correction and appears in the literature for estima-
tors of the variance (see Ref. [54] for the variance estimator
and its higher-order generalizations). The corresponding ex-
pression for the bispectrum S(3)

z and trispectrum S(4)
z can be

found in Appendix B of [14]. The analysis of single-photon
click events requires a modification of the scheme above for

two reasons: (1) Photons detected at times t j correspond to
a continuous-measurement record z(t ) = ∑

j δ(t − t j ), where
δ(τ ) is the Dirac-delta distribution function. A naive dis-
cretization of z(t ) into finite time steps is no longer possible.
(2) The detector model within our Markov theory does not
yield δ pulses for the theoretical detector output z(t ). Instead,
short box-shaped pulses of varying temporal length t appear,
where t is exponentially distributed with the distribution
function p(t ) = γdete−γdett for t > 0 and 0 otherwise. The
contribution of such pulses to the Fourier coefficient there-
fore varies correspondingly. For a comparison of experimental
spectra and model spectra issues 1 and 2 have to be taken into
account. Consider click times t (n)

j that relate to the same time
interval n of length T . A Monte Carlo resampling of the click
events yields new Fourier coefficients

a′(n)
k =

∑
j

g
(
t (n)

j

)
b(n)

j exp
(
iωkt (n)

j

)
, (A3)

where the δ-like contribution at time t (n)
j enters the coef-

ficient and the exponential distribution is regarded via the
new random variables b(n)

j , which are distributed according to
p(x) = e−x. The polyspectra are then calculated via Eq. (A2)
and its higher-order generalizations by replacing a(n)

k by a′(n)
k

and averaging over, typically, 100 different realizations of ran-
dom b(n)

j ’s. A naive approach, where b(n)
j ≡ 1, would result in

incorrect spectra as higher-order moments of bj appear in the
calculation of spectra, and the correct exponential distribution
yields, e.g., 〈b(n)

j 〉 = 1, 〈(b(n)
j )2〉 = 2, and 〈(b(n)

j )3〉 = 3!, while

b(n)
j ≡ 1 would yield a value of 1 for all those moments. All

experimental spectra were calculated using our SIGNALSNAP

toolbox [27]. While the introduction of new randomness via
Monte Carlo resampling seems not to be very elegant, its
numerical implementation is straightforward and successfully
bridges experiment and theory. Nevertheless, a more direct
scheme of calculating experimental spectra from the time
stamps t j without the need for introducing new randomness
is certainly desirable but currently elusive.

APPENDIX B: FOURTH-ORDER
QUANTUM POLYSPECTRUM

The fourth-order polyspectrum of the detector output z(t )
of the continuously monitored quantum system in the steady
state follows from the SME and the definition of Brillinger’s
polyspectra S(n)

z . The spectrum (for second- and third-order
spectra see the main text) [50]

S(4)
z (ω1, ω2, ω3, ω4 = −ω1 − ω2 − ω3) = β8

∑
{k,l,m,n}∈prm.{1,2,3,4}

{
Tr[A′G ′(ωn)A′G ′(ωm + ωn)A′G ′(ωl + ωm + ωn)A′ρ0]

− 1

2π

∫
Tr[A′G ′(ωn)G ′(ωm + ωn − ω)A′ρ0]Tr[A′G ′(ω)G ′(ωl + ωm + ωn)A′ρ0]dω

− 1

2π

∫
Tr[A′G ′(ωn)G ′(ωl + ωm + ωn)G ′(ωm + ωn − ω)A′ρ0]Tr[A′G ′(ω)A′ρ0]dω

}

(B1)

was first derived in Refs. [16,17], where an efficient method for its evaluation was also given. The spectra in this work were
numerically calculated from the Liouvillian L and measurement operator A using our software library QUANTUMCATCH, which
is based on the QUTIP and ARRAYFIRE software libraries [48,51,55].

062210-8



QUANTUM POLYSPECTRA APPROACH TO THE DYNAMICS … PHYSICAL REVIEW A 109, 062210 (2024)

[1] M. J. Stevens, Photon statistics, measurements, and measure-
ments tools, Exp. Methods Phys. Sci. 45, 25 (2013).

[2] M. Andrec, R. M. Levy, and D. S. Talaga, Direct determination
of kinetic rates from single-molecule photon arrival trajectories
using hidden Markov models, J. Phys. Chem. A 107, 7454
(2003).

[3] S. A. McKinney, C. Joo, and T. Ha, Analysis of single-molecule
FRET trajectories using hidden Markov modeling, Biophys. J.
91, 1941 (2006).

[4] M. Jäger, A. Kiel, D.-P. Herten, and F. A. Hamprecht, Anal-
ysis of single-molecule fluorescence spectroscopic data with a
Markov-modulated Poisson process, ChemPhysChem 10, 2486
(2009).

[5] M. Götz et al., A blind benchmark of analysis tools to infer
kinetic rate constants from single-molecule FRET trajectories,
Nat. Commun. 13, 5402 (2022).

[6] P. Senellart, G. Solomon, and A. White, High-performance
semiconductor quantum-dot single-photon sources,
Nat. Nanotechnol. 12, 1026 (2017).

[7] M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt,
B. Wohlfeil, L. Krüger, J. H. Schulze, T. Heindel, S. Burger, F.
Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, Highly
indistinguishable photons from deterministic quantum-dot mi-
crolenses utilizing three-dimensional in situ electron-beam
lithography, Nat. Commun. 6, 7662 (2015).

[8] T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F.
Hargart, W.-M. Schulz, M. Eichfelder, R. Roßbach, S. Nauerth,
M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein,
S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, Quan-
tum key distribution using quantum dot single-photon emitting
diodes in the red and near infrared spectral range, New J. Phys.
14, 083001 (2012).

[9] M. Müller, S. Bounouar, K. D. Jöns, M. Glässl, and P. Michler,
On-demand generation of indistinguishable polarization-
entangled photon pairs, Nat. Photon. 8, 224 (2014).

[10] A. Kurzmann, P. Stegmann, J. Kerski, R. Schott, A. Ludwig,
A. D. Wieck, J. König, A. Lorke, and M. Geller, Optical detec-
tion of single-electron tunneling into a semiconductor quantum
dot, Phys. Rev. Lett. 122, 247403 (2019).

[11] A. N. Vamivakas, C. Y. Lu, C. Matthiesen, Y. Zhao, S. Fält,
A. Badolato, and M. Atatüre, Observation of spin-dependent
quantum jumps via quantum dot resonance fluorescence,
Nature (London) 467, 297 (2010).

[12] A. V. Kuhlmann, J. Houel, A. Ludwig, L. Greuter, D. Reuter,
A. D. Wieck, M. Poggio, and R. J. Warburton, Charge noise
and spin noise in a semiconductor quantum device, Nat. Phys.
9, 570 (2013).

[13] L. S. Levitov, H. Lee, and G. B. Lesovik, Electron counting
statistics and coherent states of electric current, J. Math. Phys.
37, 4845 (1996).

[14] M. Sifft, A. Kurzmann, J. Kerski, R. Schott, A. Ludwig,
A. D. Wieck, A. Lorke, M. Geller, and D. Hägele, Quantum
polyspectra for modeling and evaluating quantum transport
measurements: A unifying approach to the strong and weak
measurement regime, Phys. Rev. Res. 3, 033123 (2021).

[15] J. Kerski, H. Mannel, P. Lochner, E. Kleinherbers, A.
Kurzmann, A. Ludwig, A. D. Wieck, J. König, A. Lorke,
and M. Geller, Post-processing of real-time quantum event
measurements for an optimal bandwidth, Sci. Rep. 13, 1105
(2023).

[16] D. Hägele and F. Schefczik, Higher-order moments, cumu-
lants, and spectra of continuous quantum noise measurements,
Phys. Rev. B 98, 205143 (2018).

[17] D. Hägele, M. Sifft, and F. Schefczik, Erratum: Higher-order
moments, cumulants, and spectra of continuous quantum noise
measurements [Phys. Rev. B 98, 205143 (2018)], Phys. Rev. B
102, 119901(E) (2020).

[18] M. Sifft and D. Hägele, Random-time quantum measurements,
Phys. Rev. A 107, 052203 (2023).

[19] J. Meinel, V. Vorobyov, P. Wang, B. Yavkin, M. Pfender,
H. Sumiya, S. Onada, J. Isoya, R.-B. Liu, and J. Wrachtrup,
Quantum nonlinear spectroscopy of single nuclear spins,
Nat. Commun. 13, 5318 (2022).

[20] E. Kleinherbers, P. Stegmann, A. Kurzmann, M. Geller, A.
Lorke, and J. König, Pushing the limits in real-time measure-
ments of quantum dynamics, Phys. Rev. Lett. 128, 087701
(2022).

[21] G. T. Landi, M. J. Kewming, M. T. Mitchison, and P. P. Potts,
Current fluctuations in open quantum systems: Bridging the gap
between quantum continuous measurements and full counting
statistics, PRX Quantum 5, 020201 (2024).

[22] D. R. Cox, Some statistical methods connected with series of
events, J. R. Stat. Soc. Ser. B 17, 129 (1955).

[23] See the Supplemental Material in Ref. [10].
[24] D. R. Brillinger, An introduction to polyspectra, Ann. Math.

Stat. 36, 1351 (1965).
[25] C. Gardiner, Stochastic Methods, 4th ed. (Springer, Berlin,

2009).
[26] S. Starosielec, R. Fainblat, J. Rudolph, and D. Hägele, Two-

dimensional higher order noise spectroscopy up to radio
frequencies, Rev. Sci. Instrum. 81, 125101 (2010).

[27] M. Sifft, SIGNALSNAP toolbox, https://github.com/MarkusSifft/
SignalSnap.

[28] G. D. Forney, The Viterbi algorithm, Proc. IEEE 61, 268
(1973).

[29] L. R. Rabiner and B. H. Juang, An introduction to hidden
Markov models, IEEE ASSP 3, 4 (1986).

[30] D. A. Bagrets and Y. V. Nazarov, Full counting statistics of
charge transfer in Coulomb blockade systems, Phys. Rev. B 67,
085316 (2003).

[31] N. Ubbelohde, C. Fricke, C. Flindt, F. Hohls, and R. J. Haug,
Measurement of finite-frequency current statistics in a single-
electron transistor, Nat. Commun. 3, 612 (2012).

[32] C. Emary, D. Marcos, R. Aguado, and T. Brandes, Frequency-
dependent counting statistics in interacting nanoscale conduc-
tors, Phys. Rev. B 76, 161404(R) (2007).

[33] D. Kambly, C. Flindt, and M. Büttiker, Factorial cumulants re-
veal interactions in counting statistics, Phys. Rev. B 83, 075432
(2011).

[34] P. Stegmann, B. Sothmann, A. Hucht, and J. König, Detection
of interactions via generalized factorial cumulants in systems in
and out of equilibrium, Phys. Rev. B 92, 155413 (2015).

[35] A. Tilloy, Exact signal correlators in continuous quantum mea-
surements, Phys. Rev. A 98, 010104(R) (2018).

[36] K. Jacobs and D. A. Steck, A straightforward introduction to
continuous quantum measurement, Contemp. Phys. 47, 279
(2006).

[37] A. Barchielli, L. Lanz, and G. M. Prosperi, A model for the
macroscopic description and continual observations in quantum
mechanics, Nuovo Cimento 72, 79 (1982).

062210-9

https://doi.org/10.1016/B978-0-12-387695-9.00002-0
https://doi.org/10.1021/jp035514+
https://doi.org/10.1529/biophysj.106.082487
https://doi.org/10.1002/cphc.200900331
https://doi.org/10.1038/s41467-022-33023-3
https://doi.org/10.1038/nnano.2017.218
https://doi.org/10.1038/ncomms8662
https://doi.org/10.1088/1367-2630/14/8/083001
https://doi.org/10.1038/nphoton.2013.377
https://doi.org/10.1103/PhysRevLett.122.247403
https://doi.org/10.1038/nature09359
https://doi.org/10.1038/nphys2688
https://doi.org/10.1063/1.531672
https://doi.org/10.1103/PhysRevResearch.3.033123
https://doi.org/10.1038/s41598-023-28273-0
https://doi.org/10.1103/PhysRevB.98.205143
https://doi.org/10.1103/PhysRevB.102.119901
https://doi.org/10.1103/PhysRevA.107.052203
https://doi.org/10.1038/s41467-022-32610-8
https://doi.org/10.1103/PhysRevLett.128.087701
https://doi.org/10.1103/PRXQuantum.5.020201
https://doi.org/10.1111/j.2517-6161.1955.tb00188.x
https://doi.org/10.1214/aoms/1177699896
https://doi.org/10.1063/1.3504369
https://github.com/MarkusSifft/SignalSnap
https://doi.org/10.1109/PROC.1973.9030
https://doi.org/10.1109/MASSP.1986.1165342
https://doi.org/10.1103/PhysRevB.67.085316
https://doi.org/10.1038/ncomms1620
https://doi.org/10.1103/PhysRevB.76.161404
https://doi.org/10.1103/PhysRevB.83.075432
https://doi.org/10.1103/PhysRevB.92.155413
https://doi.org/10.1103/PhysRevA.98.010104
https://doi.org/10.1080/00107510601101934
https://doi.org/10.1007/BF02894935


M. SIFFT et al. PHYSICAL REVIEW A 109, 062210 (2024)

[38] A. Barchielli and M. Gregoratti, Quantum Trajectories and
Measurements in Continuous Time: The Diffusive Case, Lecture
Notes in Physics Vol. 782 (Springer, Berlin, 2009).

[39] V. Belavkin, Non-demolition measurement and control in quan-
tum dynamical systems, in Information Complexity and Control
in Quantum Physics, edited by A. Blaquiere, S. Diner, and G.
Lochak, International Centre for Mechanical Sciences Vol. 294
(Springer-Verlag, Vienna, 1987), p. 311.

[40] L. Diosi, Continuous quantum measurement and Ito formalism,
Phys. Lett. A 129, 419 (1988).

[41] M. J. Gagen, H. M. Wiseman, and G. J. Milburn, Continuous
position measurements and the quantum Zeno effect, Phys. Rev.
A 48, 132 (1993).

[42] A. N. Korotkov, Continuous quantum measurement of a double
dot, Phys. Rev. B 60, 5737 (1999).

[43] A. N. Korotkov, Output spectrum of a detector measuring quan-
tum oscillations, Phys. Rev. B 63, 085312 (2001).

[44] H.-S. Goan, G. J. Milburn, H. M. Wiseman, and H. B. Sun,
Continuous quantum measurement of two coupled quantum
dots using a point contact: A quantum trajectory approach,
Phys. Rev. B 63, 125326 (2001).

[45] S. Attal and Y. Pautrat, From repeated to continuous quantum
interactions, Ann. Henri Poincare 7, 59 (2006).

[46] S. Attal and C. Pellegrini, Stochastic master equations in
thermal environment, Open Syst. Inf. Dyn. 17, 389 (2010).

[47] J. Gross, C. Caves, G. Milburn, and J. Combes, Qubit mod-
els of weak continuous measurements: Markovian conditional
and open-system dynamics, Quantum Sci. Technol. 3, 024005
(2018).

[48] J. Johansson, P. Nation, and F. Nori, Qutip 2: A Python
framework for the dynamics of open quantum systems,
Comput. Phys. Commun. 184, 1234 (2013).

[49] A. Tilloy, M. Bauer, and D. Bernard, Spikes in quantum trajec-
tories, Phys. Rev. A 92, 052111 (2015).

[50] Note that k is not required on the right-hand side.
[51] M. Sifft, QUANTUMCATCH toolbox, https://github.com/

MarkusSifft/QuantumCatch.
[52] F. Schefczik and D. Hägele, Ready-to-use unbiased estimators

for multivariate cumulants including one that outperforms x3,
arXiv:1904.12154.

[53] S. Starosielec and D. Hägele, Discrete-time windows with
minimal RMS bandwidth for given RMS temporal width,
Signal Process. 102, 240 (2014).

[54] R. A. Fisher, Moments and product moments of sampling dis-
tributions, Proc. London Math. Soc. Ser. 30, 199 (1928).

[55] P. Yalamanchili, U. Arshad, Z. Mohammed, P. Garigipati, P.
Entschev, B. Kloppenborg, J. Malcolm, and J. Melonakos, Ar-
rayFire - A High Performance Software Library for Parallel
Computing with an Easy-to-Use API (AccelerEyes, Atlanta,
2015).

062210-10

https://doi.org/10.1016/0375-9601(88)90309-X
https://doi.org/10.1103/PhysRevA.48.132
https://doi.org/10.1103/PhysRevB.60.5737
https://doi.org/10.1103/PhysRevB.63.085312
https://doi.org/10.1103/PhysRevB.63.125326
https://doi.org/10.1007/s00023-005-0242-8
https://doi.org/10.1142/S1230161210000242
https://doi.org/10.1088/2058-9565/aaa39f
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1103/PhysRevA.92.052111
https://github.com/MarkusSifft/QuantumCatch
https://arxiv.org/abs/1904.12154
https://doi.org/10.1016/j.sigpro.2014.03.033

