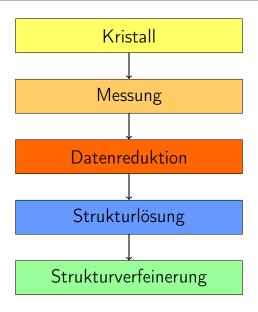
Strukturmethoden:

Röntgenstrukturanalyse von Einkristallen

Sommersemester 2024

Christoph Wölper

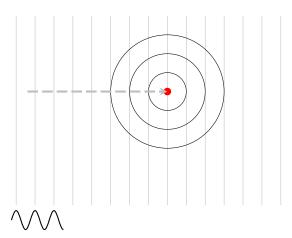

Institut für Anorganische Chemie der Universität Duisburg-Essen

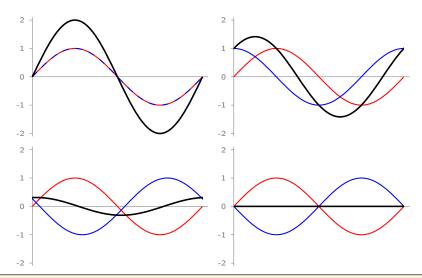
Vorlesungsunterlagen

- Moodle läuft: https://moodle.uni-due.de/course/view.php?id=40684
- Home-Page: unter AK Schulz \rightarrow Teaching \rightarrow Strukturmethoden

Was bisher geschah

- Gitter im Detail
 - → Symmetrie von Gittern
 - → Wahl der Elementarzelle
 - → Gitterzentrierungen
 - → Bravais-Gitter
- Raumgruppen
 - → mathematische Definition einer Gruppe
 - → Raumgruppensymbole
 - → Asymmetrische Einheit
 - → Spezielle Lagen
- M.C. Escher! Flächengruppen, es geht auch in 2D!


Wie sehen die Messwerte aus?

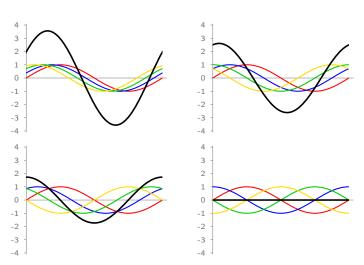

Woher kommen die Beugungsmaxima?

- Wie wechselwirkt Röntgenstrahlung mit Materie?
- Streuung
- Interferenz

Streuung nach Thomson

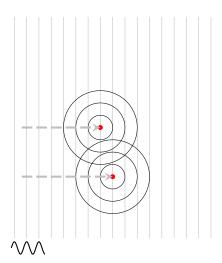
Interferenz

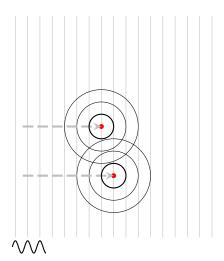
Interferenz

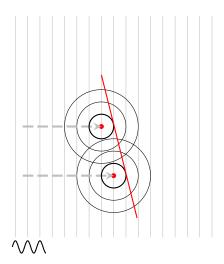

für 2 Wellen:

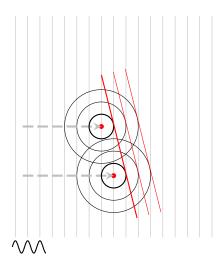
- 0° Phasendifferenz → konstruktive Interferenz
- 180° Phasendifferenz \mapsto destruktive Interferenz/Auslöschung

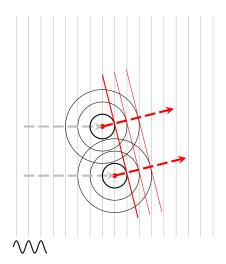
für mehrere Wellen:

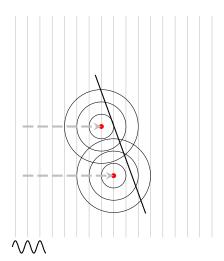

- 0° Phasendifferenz → konstruktive Interferenz
- ullet gleichmäßige Verteilung der Phasen \mapsto Auslöschung

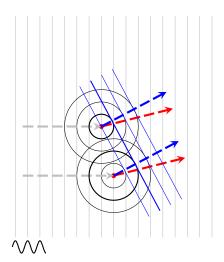

Interferenz

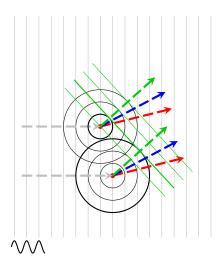


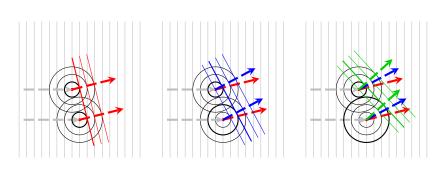

Interferenzbedingungen

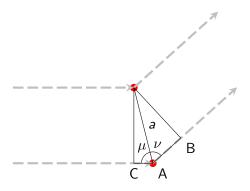

- Kohärenz (konstante Phasendifferenz)
- in der Praxis Sekundärwellen der selben Ausgangswelle
- Gitterabstände und Wellenlänge müssen ähnlich sein

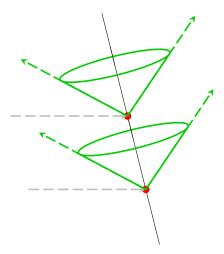


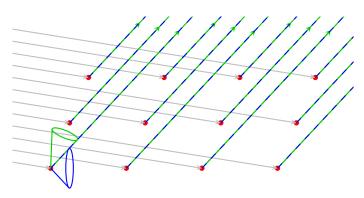


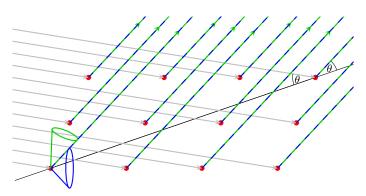




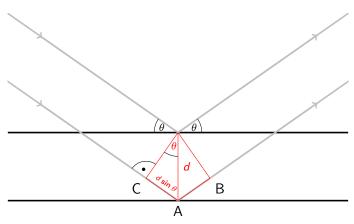





 $a\cos\mu + a\cos\nu = n\lambda$


$$\overline{\mathsf{CA}} + \overline{\mathsf{AB}} = a \cos \mu + a \cos \nu = n\lambda$$

- in drei Dimensionen konzentrische Kugeln statt Kreise für die Position der Wellenberge
- Tangenten bilden einen Kegelmantel
- Ausbreitungsrichtung kegelförmig senkrecht zum dargestellten Kegelmantel mit Öffnungswinkel von 2ν



$$a\cos \mu_a + a\cos \nu_a = n_a\lambda$$

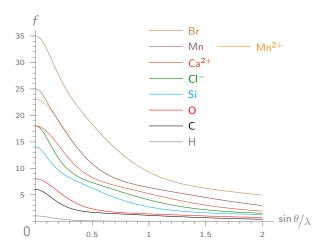
 $b\cos \mu_b + b\cos \nu_b = n_b\lambda$

$$a\cos \mu_a + a\cos \nu_a = n_a\lambda$$

 $b\cos \mu_b + b\cos \nu_b = n_b\lambda$

Reflexion an Gitterebenen

$$2d_{hkl}\sin\theta = n\lambda$$


Reflexion an Gitterebenen

- h, k und l sind ganzzahlig
 - → die Miller-Indices resultieren aus den Beugungsordnungen
- ein Kristall ist periodisch aufgebaut
 - → Beweis durch Beugungsbild mit diskreten Maxima

Reflexintensitäten

- Beschreibung der Streuwellen als Kugelwellen nur für punktförmige Atome exakt
- Durch Interferenz und thermische Bewegung nicht isotrop
- Streufaktor f für quantitative Beschreibung
 - → Sphärische Elektronendichte statt Punktatom
 - → Atoms In Molecules (AIM) Ansatz

Reflexintensitäten

Der Streufaktor ist eine Funktion von θ und Atomsorte

Reflexintensitäten

- Beschreibung der Streuwellen als Kugelwellen nur für punktförmige Atome exakt
- Durch Interferenz und thermische Bewegung nicht isotrop
- Streufaktor f f
 ür quantitative Beschreibung
 - → Sphärische Elektronendichte statt Punktatom
 - → Atoms In Molecules (AIM) Ansatz
- Elektronendichte in der Miller-Ebene
- Wasserstoffatome m
 üssen gesondert behandelt werden