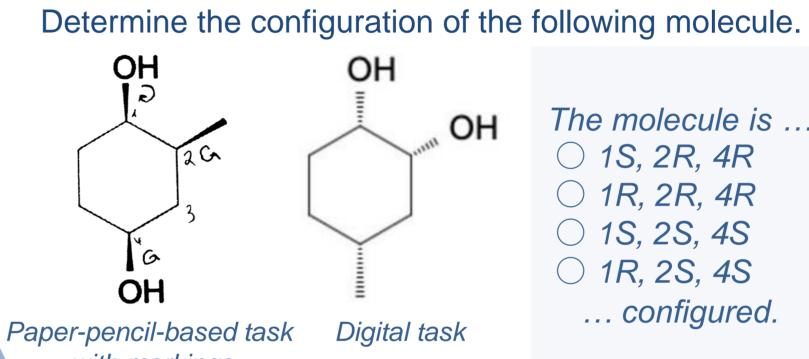

Predetermination of Visual Representation Type Influences Students' Performance and Cognitive Load Katrin Schüßler, Michael Giese, & Maik Walpuski

Open-Minded

information into visual communicating in the field of organic chemistry

Sample

Chemistry majors and students preparing to become chemistry teachers from an introductory organic chemistry course


formats (paper-pencil, digital)

Performance and cognitive load

Results Study 1

cognitive load (study 2)?

Item Pair (Study 2)

Digital task with solution

Reliability Study 1 (Translating)

The students' solutions were used to calculate their person abilities using the Rasch model (Winsteps version 5.2.4.0, Boone, et a., 2014).

N = 48, 14 Item pairs Paper-and-pencil assessment: person reliability = .85, item reliability = .87Digital assessment: person reliability = .83, item reliability = .89

Reliability Study 2 (Chirality)

The students' solutions were used to calculate task difficulties using the Rasch model (Winsteps version 5.2.4.0, Boone, et a., 2014). N = 80, 19 Item Pairs (DC, MC, drawing) Chemistry tasks: Person reliability = .82, item reliability = .90Invested mental effort (Paas, 1992): Person reliability = .93, item reliability = .96

Learners used less abstract representations for translating molecules' systematic names into visual representation for 22.44 % of all given responses (631).

The number of missing answers is significantly higher for the digital format (40.1 %, paper-pencil-format: 25.7 %, t(47) = 3.80, p < .001).

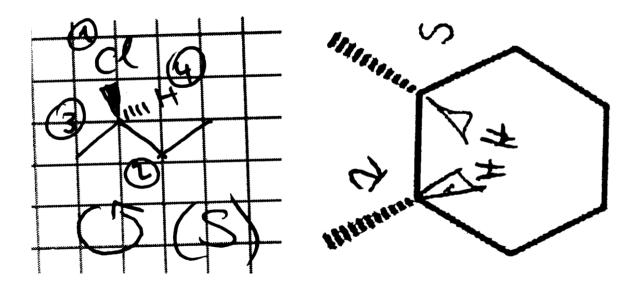
Discussion

Common organic chemistry tasks are not easily adaptable to digital formats.

Digital tasks do not allow students to work in the same way as they are used to with paper-pencil formats.

with markings

Results Study 2


... configured.

47 of 80 learners used markings or notes to make implicit information explicit in the paper-pencil format (the digital format does not provide such options).

Digital format goes along with higher task difficulties, t(18) = 2.35, p = .031, $d_{RM} = 0.69$, and higher invested mental effort, *t*(18) = 6.42, *p* = ≤.001, *d*_{*RM*} = 1.68.

An interaction term of invested mental effort and note-taking best explains the probability of solving the tasks for those students who take notes (students who take notes generally perform better than students who do not take notes).

Markings Within Molecules

Visual representations of molecules seem to be a critical factor here.

How can students be supported in learning to meaningfully work with abstract representations such as skeletal formula?

Interaction

Results indicate that invested mental effort, B = -0.19, SE = .03, t = 5.99, p < .001, and note taking, B = -0.22, SE = .11, t = -2.16, p .047, are significant predictors. The interaction term (invested mental effort X note taking) turned out to be another significant predictor, B = 0.37, SE = .12, t = 3.07, p = .008. Overall, the model accounted for 81 % of the variance of the probability of solving the task, with the interaction term explaining 12 % variance beyond the main-effects terms.

PRÜFUNGEN **I**NNOVIEREN TRANSFER SCHAFFEN **CHANCENGERECHTIGKEIT** FÖRDERN

References

Example task

Walpuski Group

Kontakt

Katrin Schüßler

Schützenbahn 70 45127 Essen (Germany) katrin.schuessler@uni-due.de