Minimal Cones and a Problem of Euler

Ulrich Dierkes (*)

Abstract - The minimal cones $C=\left\{(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{m} ;|x| \leq|y|\right\}$ are shown to minimize the weighted perimeter $P_{\alpha}(E)=\int|x|^{\alpha}\left|D \varphi_{E}\right|, \alpha \in \mathbb{R}, E \subset \mathbb{R}^{m} \times \mathbb{R}^{m}$, whenever $m+\alpha \geq 4$. This completes and improves recent results of Dierkes and Huisken [4].

Mathematics Subject Classification 2020 - 53A10, 49Q05, 35A15.
Keywords - Minimal Cones, weighted Perimeter.

Introduction

Here we consider the n-dimensional analogue of a problem already investigated by Leonhard Euler [5], namely the variational integral

$$
\mathcal{E}_{\alpha}(M):=\int_{M}|x|^{\alpha} d \mathcal{H}_{n-1} \quad, \alpha \in \mathbb{R}
$$

where $M \subset \mathbb{R}^{n}$ denotes some smooth hypersurface and \mathcal{H}_{k} stands for the k-dimensional Hausdorff measure. M is called "stationary with respect to \mathcal{E}_{α} " or simply " α-stationary", if the first variation $\delta \mathcal{E}_{\alpha}(M, X)$ vanishes, and a stationary surface M is called " α-stable" if the second variation $\delta^{2} \mathcal{E}_{\alpha}(M, X)$ is nonnegative for suitable variations X of M. Standard computations show that M is α-stationary, iff the mean curvature $H(x)$ and the unit normal $v=v(x)$ of M at $x \in M$ respectively satisfy

$$
H(x)=\alpha|x|^{-2}\langle x, v\rangle, x \neq 0
$$

(*) Indirizzo dell'A.: Faculty of Mathematics, University of Duisburg-Essen, Thea-Leymann-Str. 9, 45127 Essen, Germany; ulrich.dierkes @uni-due.de
while in addition M is also α-stable, if for all $\xi \in C_{c}^{1}(M, \mathbb{R})$ we have

$$
\begin{equation*}
\int_{M}|x|^{\alpha}\left\{\frac{2}{\alpha} H^{2}+|A|^{2}\right\} \xi^{2} d \mathcal{H}_{n-1} \leq \int_{M}|x|^{\alpha}\left\{\alpha|x|^{-2} \xi^{2}+|\nabla \xi|^{2}\right\} d \mathcal{H}_{n-1} \tag{0.1}
\end{equation*}
$$

where $|A|$ denotes the length of the second fundamental form A of M, cp. Proposition 1.1 and 1.4 in [4].

In particular, if $C=$ closure M is a cone in \mathbb{R}^{n} with only singularity at zero and if $M:=C-\{0\}$ is α-stationary, then C is called α-stable, if (0.1) holds for all $\xi \in C_{c}^{1}(M, \mathbb{R})$. Obviously, every area-minimal cone C in \mathbb{R}^{n} (i.e. $H=0$ on $C-\{0\}$) such that $0 \in C$ and $C-\{0\}$ is a regular hypersurface is α-stationary and we have the following stability result

Theorem. ([4]) Let $\alpha>3-n$ and suppose $C \subset \mathbb{R}^{n}$ is an α-stationary cone with vertex at the origin and such that $(n-3+\alpha)^{2} \geq 4|x|^{2}|A|^{2}-4 \alpha$. Then C is also α-stable.
(Note that the dimension of the cone C here is $(n-1)$ rather than n in the paper [4].)
In particular the cone over the Clifford torus $S^{1} \times S^{1} \subset \mathbb{R}^{2} \times \mathbb{R}^{2}$ is stable for all $\alpha \geq 1$. (Here $n=4$ and $|A|^{2}=2|x|^{-2}$). Furthermore the 7-dimensional cones over products of spheres $S^{1} \times S^{5}, S^{2} \times S^{4}$ and $S^{3} \times S^{3}$ are all α-stable, whenever $\alpha \geq \sqrt{48}-7$, cp. the list in Corollary 2.2 of [4].
Moreover it could be shown in Theorem 3.1 of [4] that all cones

$$
C_{m}=\left\{\left(x_{1}, \ldots, x_{2 m}\right) \in \mathbb{R}^{m} \times \mathbb{R}^{m} ; x_{1}^{2}+\ldots+x_{m}^{2} \leq x_{m+1}^{2}+\ldots+x_{2 m}^{2}\right\}
$$

minimize the integral \mathcal{E}_{α} in a suitable sense, if $1 \leq \alpha \leq 2(m-1)$. So in particular the cone over the Clifford torus $S^{1} \times S^{1}$ minimizes \mathcal{E}_{α}, if $1 \leq \alpha \leq 2$.
The proof of these results uses a Weierstraß-Schwarz foliation type of argument, as it was introduced in the celebrated paper by Bombieri, De Giorgi and Giusti [1]. In fact, under the prescribed conditions on α and m the cones can be embedded in a "field" or "calibration" consisting of α-stationary surfaces. On the other hand, it is known since long, that a much easier device, known as "sub-calibration" is applicable in the case of classical area-minimal cones and we refer to the papers of Lawson [6], Miranda [8], Massari-Miranda [7], Morgan [9], Davini [2] and in particular to De Philippis and Paolini [3] for more pertinent information.
We show here, that many of the α-stable cones can be "sub-calibrated" with respect to the functional \mathcal{E}_{α} and are hence also minimizers for \mathcal{E}_{α} in a very general sense. The simplified proof which will be presented here, follows the approach by De Philippis and Paolini [3] and hence we may omit some of the details, referring to their paper [3].

1. α-Subminimal Sets and Minimal Cones

Let $E \subset \mathbb{R}^{n}$ be a measurable and $\Omega \subset \mathbb{R}^{n}$ be an open set. We define the " α-perimeter" of E in Ω as

$$
P_{\alpha}(E, \Omega):=\sup \left\{\int_{E} \operatorname{div}\left\{|x|^{\alpha} g\right\} d x ; \quad g \in C_{c}^{1}\left(\Omega, \mathbb{R}^{n}\right) \text { with }|g(x)| \leq 1\right\}
$$

Note that $P_{\alpha}(E, \Omega)$ is well defined (and possibly infinite) for all $\alpha \in \mathbb{R}$ and measurable sets E. However we have

Proposition 1. Let $\alpha+n>1$ and suppose ∂E is of class C^{2}. Then $P_{\alpha}(E, \Omega)=$ $\int_{\partial E \cap \Omega}|x|^{\alpha} d \mathcal{H}_{n-1}<\infty$, for every bounded open set $\Omega \subset \mathbb{R}^{n}$.

Remark. Clearly, if $0 \notin \partial E$ and Ω is bounded, then $\int_{\partial E \cap \Omega}|x|^{\alpha} d \mathcal{H}_{n-1}$ is always finite, independet of the value of $\alpha \in \mathbb{R}$.

Proof. Let $g \in C_{c}^{1}\left(\Omega, \mathbb{R}^{n}\right),|g(x)| \leq 1$ be arbitrary, then

$$
\operatorname{div}\left(|x|^{\alpha} g\right)=\alpha|x|^{\alpha-2}(x \cdot g)+|x|^{\alpha} \operatorname{div} g
$$

which is a function of Lebesgue-class $L_{1}(\Omega)$, if $\alpha+n>1$. Denoting by φ_{E} the characteristic function of E, we obtain for arbitrary $\varepsilon>0$ and ball $B_{\varepsilon}=B_{\varepsilon}(0) \subset \mathbb{R}^{n}$ with center zero,

$$
\begin{aligned}
& \int_{E} \operatorname{div}\left(|x|^{\alpha} g\right) d x=\int_{\Omega} \varphi_{E} \operatorname{div}\left(|x|^{\alpha} g\right) d x= \\
& \int_{\Omega-B_{\varepsilon}} \varphi_{E} \operatorname{div}\left(|x|^{\alpha} g\right) d x+\int_{B_{\varepsilon}} \varphi_{E} \operatorname{div}\left(|x|^{\alpha} g\right) d x= \\
& \int_{\partial E-B_{\varepsilon}}|x|^{\alpha}(g \cdot v) d \mathcal{H}_{n-1}+\int_{\partial B_{\varepsilon} \cap E}|x|^{\alpha}\left(g \cdot v_{\varepsilon}\right) d \mathcal{H}_{n-1}+\int_{B_{\varepsilon}} \varphi_{E} \operatorname{div}\left(|x|^{\alpha} g\right) d x
\end{aligned}
$$

where v and v_{ε} stand for the exterior - or interior unit normals of ∂E and ∂B_{ε} respectively. By assumption $\alpha+n>1$, thus the last two integrals tend to zero, as $\varepsilon \searrow 0$, whence

$$
P_{\alpha}(E, \Omega) \leq \int_{\partial E}|x|^{\alpha} d \mathcal{H}_{n-1}
$$

On the other hand, since by assumption v is of class C^{1} on the boundary ∂E, we may extend $v=v(x)$ to some function $N \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ such that $|N(x)| \leq 1$ for all $x \in \mathbb{R}^{n}$. Take some function $\eta \in C_{c}^{1}(\Omega, \mathbb{R})$ with $|\eta(x)| \leq 1$ for all $x \in \Omega$ and put
$g:=\eta N \in C_{c}^{1}\left(\Omega, \mathbb{R}^{n}\right)$, then we have for every $\varepsilon>0$ the relation

$$
\begin{aligned}
& \int_{E} \operatorname{div}\left(|x|^{\alpha} g\right) d x=\int_{\Omega} \varphi_{E} \operatorname{div}\left(|x|^{\alpha} g\right) d x= \\
& \int_{\Omega-B_{\varepsilon}} \varphi_{E} \operatorname{div}\left(|x|^{\alpha} g\right) d x+\int_{B_{\varepsilon}} \varphi_{E} \operatorname{div}\left(|x|^{\alpha} g\right) d x= \\
& \int_{\partial E-B_{\varepsilon}}|x|^{\alpha} \eta d \mathcal{H}_{n-1}+\int_{\partial B_{\varepsilon} \cap E}|x|^{\alpha} \eta\left(N \cdot v_{\varepsilon}\right) d \mathcal{H}_{n-1}+\int_{B_{\varepsilon}} \varphi_{E} \operatorname{div}\left(|x|^{\alpha} g\right) d x .
\end{aligned}
$$

By virtue of $\alpha+n>1$ and upon letting $\varepsilon \searrow 0$ we find

$$
\int_{E} \operatorname{div}\left(|x|^{\alpha} g\right) d x=\int_{\partial E}|x|^{\alpha} \eta d \mathcal{H}_{n-1}
$$

whence also

$$
P_{\alpha}(E, \Omega) \geq \int_{\partial E}|x|^{\alpha} d \mathcal{H}_{n-1}
$$

To see the finiteness of both integrals we assume w.l.o.g. that - locally near zero - ∂E is described by some C^{2}-function $x_{n}=\psi\left(x_{1}, \ldots, x_{n-1}\right)$ and that $\alpha<0$. Then we have

$$
\begin{aligned}
\int_{\partial E \cap B_{R}(0)}|x|^{\alpha} d \mathcal{H}_{n-1} & \leq \int_{B_{R}(0)}\left(x_{1}^{2}+\ldots+x_{n-1}^{2}\right)^{\alpha / 2} \sqrt{1+|D \psi|^{2}} d x_{1} \ldots d x_{n-1} \leq \\
& \leq \text { const } \int_{0}^{R} r^{\alpha+n-2} d r<\infty, \text { since } \alpha+n>1
\end{aligned}
$$

Definition 1. A measurable set $E \subset \mathbb{R}^{n}$ is a "local minimum for $P_{\alpha}(\cdot)$ " in $\Omega \subset \mathbb{R}^{n}$, or simply " α-minimal in Ω ", iffor all open, boundet sets $A \subset \Omega$

$$
P_{\alpha}(E, A) \leq P_{\alpha}(F, A)
$$

for every measurable set F, such that the symmetric difference $E \Delta F \subset \subset A$ (i.e. the closure $\overline{E \Delta F} \subset A$).
E is called " α-subminimal in Ω ", if for all bounded open $A \subset \Omega$ we have

$$
P_{\alpha}(E, A) \leq P_{\alpha}(F, A)
$$

for every measurable set $F \subset E$, such that $E \backslash F \subset \subset A$.
Theorem 1. The cones $C_{m}=\left\{(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{m} ;|x| \leq|y|\right\}$ are α-minimal in \mathbb{R}^{n}, $n=2 m$, provided $m+\alpha \geq 4$.

Remark. Combining Theorem 3.1 of [4] and Theorem 1 we conclude that the cone

$$
C_{2}=\left\{(x, y) \in \mathbb{R}^{2} \times \mathbb{R}^{2} ;|x| \leq|y|\right\}
$$

has least α-perimeter P_{α} in \mathbb{R}^{4} for all $\alpha \geq 1$, in other words, the cone over the Clifford torus $S^{1} \times S^{1}$ in \mathbb{R}^{4} minimizes \mathcal{E}_{α} for any $\alpha \geq 1$. Conversely, there are no non-trivial stable cones in \mathbb{R}^{4} with vertex at zero for every $\alpha<1$, according to Theorem 2.3 in [4].

For the proof of the Theorem we present three Propositions, which follow immediately from [3].

Proposition 2. Let $\alpha+n>1$ and suppose $E \subset \mathbb{R}^{n}$ and its complement $E^{c}:=\Omega \backslash E$ are both α-subminimal in Ω, then E is α-minimal in Ω.

Proof. We first claim that, since $\alpha+n>1$, it follows that $P_{\alpha}(E, \Omega)=P_{\alpha}\left(E^{c}, \Omega\right)$. Indeed, arguing as in Proposition 1 and because of $\operatorname{div}\left(|x|^{\alpha} g\right) \in L_{1}(\Omega)$ for any $g \in$ $C_{c}^{1}\left(\Omega, \mathbb{R}^{n}\right),|g(x)| \leq 1, \alpha+n>1$, we obtain that

$$
\int_{\Omega} \operatorname{div}\left(|x|^{\alpha} g\right) d x=0
$$

Therefore

$$
\int_{\Omega} \varphi_{E} \operatorname{div}\left(|x|^{\alpha} g\right) d x=\int_{\Omega}\left(\varphi_{E}-1\right) \operatorname{div}\left(|x|^{\alpha} g\right) d x=-\int_{\Omega} \varphi_{E^{c}} \operatorname{div}\left(|x|^{\alpha} g\right) d x
$$

where $\varphi_{E^{c}}$ stands for the characteristic function of the complement $E^{c}=\Omega \backslash E$. Hence we have equality $P_{\alpha}(E, \Omega)=P_{\alpha}\left(E^{c}, \Omega\right)$ and the proof can be completed as in Proposition 1.2 of the paper [3].

Proposition 3. Let $\alpha+n>1$ and suppose $E_{k} \subset E, k \in \mathbb{N}$, are measurable, α subminimal sets in $\Omega \subset \mathbb{R}^{n}$ for all $k \in \mathbb{N}$. In addition assume that $E_{k} \rightarrow E$ in $L_{1, \operatorname{loc}}(\Omega)$ as $k \rightarrow \infty$, then also E is α-subminimal in Ω.

Proof. We only show the lower-semicontinuity of the α-perimeter, since the rest of the proof follows as in Proposition 1.3 of [3] To this end suppose $\varphi_{E_{k}} \rightarrow \varphi_{E}$ in $L_{1, \text { loc }}(\Omega)$.
For $g \in C_{c}^{1}\left(\Omega, \mathbb{R}^{n}\right),|g(x)| \leq 1$ and $\alpha+n>1$ we first have $\operatorname{div}\left(|x|^{\alpha} g\right) \in L_{1}(\Omega)$ and

$$
\int_{\Omega}\left(\varphi_{E_{k}}-\varphi_{E}\right) \operatorname{div}\left(|x|^{\alpha} g\right) d x=\int_{E_{k}-E} \operatorname{div}\left(|x|^{\alpha} g\right) d x-\int_{E-E_{k}} \operatorname{div}\left(|x|^{\alpha} g\right) d x \rightarrow 0
$$

as $k \rightarrow \infty$. Whence

$$
\begin{aligned}
\int_{\Omega} \varphi_{E} \operatorname{div}\left(|x|^{\alpha} g\right) d x & =\lim _{k \rightarrow \infty} \int_{\Omega} \varphi_{E_{k}} \operatorname{div}\left(|x|^{\alpha} g\right) d x \leq \\
& \leq \liminf _{k \rightarrow \infty} P_{\alpha}\left(E_{k}, \Omega\right)
\end{aligned}
$$

and the semicontinuity of P_{α} follows. Now we can argue as in Proposition 1.3 of [3] We skip over the details.

Definition 2. Let $\Omega \subset \mathbb{R}^{n}-\{0\}$ be open and $E \subset \Omega$ be measurable with boundary ∂E of class C^{2}. A vectorfield $\xi \in C^{1}\left(\Omega, \mathbb{R}^{n}\right)$ is an " α-subcalibration" of E (or ∂E) in Ω, if we have
i) For all $x \in \partial E, \xi(x)=v(x)=$ exterior unit normal of ∂E at x.
ii) $\operatorname{div}\left(|x|^{\alpha} \xi(x)\right) \leq 0$ for all $x \in E \cap \Omega$.
iii) $|\xi(x)| \leq 1$ for all $x \in \Omega$.

Proposition 4. Suppose $E \subset \Omega$ has boundary of class C^{2} and admits an α subcalibration in $\Omega \subset R^{n}-\{0\}$. Then E is α-subminimal in Ω, i.e. $P_{\alpha}(E, A) \leq$ $P_{\alpha}(F, A)$ for every bounded, open set $A \subset \Omega$ and all measurable $F \subset E$ with $E \backslash F \subset \subset$ A.

Proof. Analogous to Theorem 1.5 in [3] with perimeter replaced by α-perimeter.

We now turn to the

Proof of Theorem 1. The idea is to approximate the cone C_{m} with a sequence of smooth sets E_{k} which admit α-subcalibrations. By Propositions 4 and 3 it follows that E itself is α-subminimal. Again the same reasoning applies to the complement $C_{m}^{c}=\mathbb{R}^{n}-C_{m}$ and hence the cone C_{m} is α-minimal by Proposition 2.
To this end consider the function $f: \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R},(x, y) \mapsto f(x, y):=\frac{|x|^{4}-|y|^{4}}{4}$, $x, y \in \mathbb{R}^{m}$. Obviously

$$
C_{m}=\left\{(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{m} ; \quad f(x, y) \leq 0\right\}
$$

and for every $k \in \mathbb{N}$ we put

$$
E_{k}:=\left\{(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{m} ; f(x, y) \leq-1 / k\right\}
$$

and

$$
F_{k}:=\left\{(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{m} ; f(x, y) \leq 1 / k\right\} .
$$

Clearly, we have for all $k \in \mathbb{N}$

$$
E_{k} \subset C_{m} \subset F_{k} \quad \text { and }
$$

$E_{k} \rightarrow C_{m}, F_{k} \rightarrow C_{m}$ both in $L_{1, \text { loc }}\left(\mathbb{R}^{n}\right)$ as $k \rightarrow \infty$ and the complement $F_{k}^{c}=\mathbb{R}^{n} \backslash F_{k} \subset$ C_{m}^{c} and $F_{k}^{c} \rightarrow \mathbb{R}^{n}-C_{m}=C_{m}^{c}$ in $L_{1, \text { loc }}\left(\mathbb{R}^{n}\right)$ as $k \rightarrow \infty$.
Additionally, all boundaries in $\partial E_{k}, \partial F_{k}^{c}$ are smooth hypersurfaces in \mathbb{R}^{n} and are all α-subminimal in \mathbb{R}^{n}. Indeed, we claim that the vectorfield

$$
\xi(x, y):= \pm \frac{D f(x, y)}{|D f(x, y)|}
$$

defines an α-subcalibration for both E_{k} and F_{k}^{c} in $\mathbb{R}^{n}-\{0\}$ respectively, i.e. we have i), ii) and iii) of Definition 2 for all E_{k} and $F_{k}^{c}, k \in \mathbb{N}$.

While i) and iii) are obviously fulfilled in both cases, ii) needs a simple calculation: If $f(x, y)=\frac{|x|^{4}-|y|^{4}}{4}$ we find successively

$$
\begin{aligned}
f_{x} & =|x|^{2} x, f_{y}=-|y|^{2} y, \quad|D f|^{2}=|x|^{6}+|y|^{6} \\
f_{x_{i} x_{j}} & =2 x_{i} x_{j}+\delta_{i j}|x|^{2}, f_{y_{i} y_{j}}=-2 y_{i} y_{j}-\delta_{i j}|y|^{2} \\
f_{x_{i} y_{j}} & =0
\end{aligned}
$$

for all indices $i, j=1, \ldots, m$. Also, for $(x, y) \neq(0,0)$ we have $|(x, y)|^{\alpha}=\left(|x|^{2}+\right.$ $\left.|y|^{2}\right)^{\alpha / 2}, D|(x, y)|^{\alpha}=\alpha|(x, y)|^{\alpha-2}(x, y), \quad \frac{D f}{|D f|}=\frac{\left(|x|^{2} x,-|y|^{2} y\right)}{\left(|x|^{6}+|y|^{6}\right)^{1 / 2}}$ and

$$
|D f|^{3} \operatorname{div}\left(\frac{D f}{|D f|}\right)=\left(|x|^{4}-|y|^{4}\right)\left\{(m-1)|x|^{4}-(m+2)|x|^{2}|y|^{2}+(m-1)|y|^{4}\right\}
$$

whence
$|D f|^{3} \operatorname{div}\left[|(x, y)|^{\alpha} \frac{D f}{|D f|}\right]=$

$$
\alpha|D f|^{2}|(x, y)|^{\alpha-2}\left[|x|^{4}-|y|^{4}\right]+\left(|x|^{2}+|y|^{2}\right)^{\alpha / 2}
$$

$$
\left\{\left(|x|^{4}-|y|^{4}\right)\left[(m-1)|x|^{4}-(m+2)|x|^{2}|y|^{2}+(m-1)|y|^{4}\right]\right\}=
$$

$$
\alpha|(x, y)|^{\alpha-2}\left[|x|^{4}-|y|^{4}\right]\left(|x|^{6}+|y|^{6}\right)
$$

$$
+|(x, y)|^{\alpha}\left(|x|^{4}-|y|^{4}\right)\left[(m-1)|x|^{4}-(m+2)|x|^{2}|y|^{2}+(m-1)|y|^{4}\right]=
$$

$$
|(x, y)|^{\alpha-2}\left(|x|^{4}-|y|^{4}\right)\left\{(m-1+\alpha)|x|^{6}-3|x|^{4}|y|^{2}-3|x|^{2}|y|^{4}+(m-1+\alpha)|y|^{6}\right\} .
$$

Upon putting $t:=\frac{|x|^{2}}{|y|^{2}}$ we see that the sign of $\operatorname{div}\left[|(x, y)|^{\alpha} \frac{D f}{|D f|}\right]$ is the same as of $f(x, y)=\frac{|x|^{4}-|y|^{4}}{4}$ provided the polynomial

$$
p_{m, \alpha}(t):=(m-1+\alpha) t^{3}-3 t^{2}-3 t+(m-1+\alpha)
$$

is nonnegative for all $t \geq 0$. Since for every $t \geq 0$ we have $3 t^{3}-3 t^{2}-3 t+3 \geq 0$ (with zero minimum for $t \geq 0$ at $t=1$) it also follows that $p_{m, \alpha}(t) \geq 0$ for all $t \geq 0$, if we assume that $(m-1+\alpha) \geq 3$.
Concluding we have shown that the vectorfield $\xi(x, y)=\frac{D f(x, y)}{|D f(x, y)|}$ defines an α subcalibration for the sets E_{k} in $\mathbb{R}^{n}-\{0\}, k \in \mathbb{N}$, while $-\xi(x, y)$ furnishes an α subcalibration for the sets $F_{k}^{c}=\mathbb{R}^{n}-F_{k}$ in $\mathbb{R}^{n}-\{0\}$. Proposition 4 yields the α subminimality of the sets E_{k} and F_{k}^{c} in $\mathbb{R}^{n}-\{0\}$ respectively. However, $0 \notin E_{k}$ or F_{k}^{c} and we have $P_{\alpha}\left(E_{k}, A\right)=P_{\alpha}\left(E_{k}, A-\{0\}\right) \leq P_{\alpha}(F, A-\{0\}) \leq P_{\alpha}(F, A)$ for every bounded open set $A \subset \mathbb{R}^{n}$ and arbitrary $F \subset E_{k}$ with $E_{k} \backslash F \subset \subset A$, which shows that all sets E_{k} are also α-subminimal in all of \mathbb{R}^{n} (rather that just in $\mathbb{R}^{n}-\{0\}$). A similar argument implies the α-subminimality of F_{k}^{c} in \mathbb{R}^{n} and since $E_{k} \rightarrow C_{m}$ or $F_{k}^{c} \rightarrow \mathbb{R}^{n}-C_{m}$ both in $L_{1, \text { loc }}\left(\mathbb{R}^{n}\right)$ as $k \rightarrow \infty$, we infer from Proposition 3 that C_{m} as well as its complement $C_{m}^{c}=\mathbb{R}^{n}-C_{m}$ are both α-subminimal in \mathbb{R}^{n}. An application of Proposition 2 concludes the proof of the Theorem 1.

Remark. Using the same type of argument as in the proof of Theorem 3.1 one can also deal with the minimal cones

$$
C_{m, k}=\left\{(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{k} ; \quad(k-1)|x|^{2} \leq(m-1)|y|^{2}\right\}
$$

A subcalibration might then be determined by the normalized gradient of the function

$$
f: \mathbb{R}^{m} \times \mathbb{R}^{k} \rightarrow \mathbb{R}, f(x, y):=\frac{1}{4}\left((k-1)^{2}|x|^{4}-(m-1)^{2}|y|^{4}\right)
$$

under suitable conditions on m and k, however we shall not dwell on this.

References

[1] E. Bombieri, E. De Giorgi, E. Giusti, Minimal cones and the Bernstein problem. Invent. Math 7 (1969), 243-268.
[2] A. Davinı, On calibrations for Lawson's cones. Rend. Sem. Mat. Univ. Padova 111 (2004), 55-70.
[3] G. De Philippis, E. Paolini, A short proof of the minimality of Simons cone. Rend. Sem. Mat. Univ. Padova 121 (2009), 233-241.
[4] U. Dierkes, G. Huisken, The n-dimensional analogue of a variational problem of Euler. Math. Ann. https://doi.org/10.1007/s00208-023-02726-3.
[5] L. Euler, Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu accepti. Lausanne et Genevae 1744.
[6] H. B. Lawson, The equivariant Plateau problem and interior regularity. Trans. Am. Math. Soc. 173 (1972), 231-249.
[7] U. Massari, M. Miranda, A remark on minimal cones Bol. Un. Mat. Ital. 6 (1983), 123-125.
[8] M. Miranda, Superficie minime e il problema di Plateau. Quaderni di Matematica, Dipart. di Mat., Univ. de Lecce (2006).
[9] F. Morgan, The cone over the Clifford torus in \mathbb{R}^{4} is Φ-minimizing. Math. Ann. 289 (1991), 341-354.

