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Abstract – The minimal cones 𝐶 = {(𝑥, 𝑦) ∈ R𝑚 × R𝑚; |𝑥 | ≤ |𝑦 |} are shown to minimize the
weighted perimeter 𝑃𝛼 (𝐸) =

∫
|𝑥 |𝛼 |𝐷𝜑𝐸 |, 𝛼 ∈ R, 𝐸 ⊂ R𝑚 × R𝑚, whenever 𝑚 + 𝛼 ≥ 4. This

completes and improves recent results of Dierkes and Huisken [4].
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Introduction

Here we consider the 𝑛-dimensional analogue of a problem already investigated by
Leonhard Euler [5], namely the variational integral

E𝛼 (𝑀) :=
∫
𝑀

|𝑥 |𝛼𝑑H𝑛−1 , 𝛼 ∈ R,

where 𝑀 ⊂ R𝑛 denotes some smooth hypersurface andH𝑘 stands for the 𝑘-dimensional
Hausdorff measure. 𝑀 is called “stationary with respect toE𝛼” or simply “𝛼-stationary”,
if the first variation 𝛿E𝛼 (𝑀, 𝑋) vanishes, and a stationary surface 𝑀 is called “𝛼-stable”
if the second variation 𝛿2E𝛼 (𝑀, 𝑋) is nonnegative for suitable variations 𝑋 of 𝑀 .
Standard computations show that 𝑀 is 𝛼-stationary, iff the mean curvature 𝐻 (𝑥) and
the unit normal 𝜈 = 𝜈(𝑥) of 𝑀 at 𝑥 ∈ 𝑀 respectively satisfy

𝐻 (𝑥) = 𝛼 |𝑥 |−2⟨𝑥, 𝜈⟩, 𝑥 ≠ 0,
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while in addition 𝑀 is also 𝛼-stable, if for all 𝜉 ∈ 𝐶1
𝑐 (𝑀,R) we have

(0.1)
∫
𝑀

|𝑥 |𝛼
{ 2
𝛼
𝐻2 + |𝐴|2

}
𝜉2𝑑H𝑛−1 ≤

∫
𝑀

|𝑥 |𝛼
{
𝛼 |𝑥 |−2𝜉2 + |∇𝜉 |2

}
𝑑H𝑛−1

where |𝐴| denotes the length of the second fundamental form 𝐴 of 𝑀 , cp. Proposition
1.1 and 1.4 in [4].
In particular, if 𝐶 = closure 𝑀 is a cone in R𝑛 with only singularity at zero and if
𝑀 :=𝐶 − {0} is𝛼-stationary, then𝐶 is called𝛼-stable, if (0.1) holds for all 𝜉 ∈𝐶1

𝑐 (𝑀,R).
Obviously, every area-minimal cone 𝐶 in R𝑛 (i.e. 𝐻 = 0 on 𝐶 − {0}) such that 0 ∈ 𝐶

and𝐶 − {0} is a regular hypersurface is 𝛼-stationary and we have the following stability
result

Theorem. ([4]) Let 𝛼 > 3 − 𝑛 and suppose 𝐶 ⊂ R𝑛 is an 𝛼-stationary cone with
vertex at the origin and such that (𝑛 − 3 + 𝛼)2 ≥ 4|𝑥 |2 |𝐴|2 − 4𝛼. Then𝐶 is also 𝛼-stable.

(Note that the dimension of the cone 𝐶 here is (𝑛 − 1) rather than 𝑛 in the paper
[4].)
In particular the cone over the Clifford torus 𝑆1 × 𝑆1 ⊂ R2 × R2 is stable for all 𝛼 ≥ 1.
(Here 𝑛 = 4 and |𝐴|2 = 2|𝑥 |−2). Furthermore the 7-dimensional cones over products of
spheres 𝑆1 × 𝑆5, 𝑆2 × 𝑆4 and 𝑆3 × 𝑆3 are all 𝛼-stable, whenever 𝛼 ≥

√
48 − 7, cp. the

list in Corollary 2.2 of [4].
Moreover it could be shown in Theorem 3.1 of [4] that all cones

𝐶𝑚 = {(𝑥1, . . . , 𝑥2𝑚) ∈ R𝑚 × R𝑚; 𝑥2
1 + . . . + 𝑥2

𝑚 ≤ 𝑥2
𝑚+1 + . . . + 𝑥2

2𝑚}

minimize the integral E𝛼 in a suitable sense, if 1 ≤ 𝛼 ≤ 2(𝑚 − 1). So in particular the
cone over the Clifford torus 𝑆1 × 𝑆1 minimizes E𝛼, if 1 ≤ 𝛼 ≤ 2.
The proof of these results uses a Weierstraß-Schwarz foliation type of argument, as
it was introduced in the celebrated paper by Bombieri, De Giorgi and Giusti [1]. In
fact, under the prescribed conditions on 𝛼 and 𝑚 the cones can be embedded in a “field”
or “calibration” consisting of 𝛼-stationary surfaces. On the other hand, it is known
since long, that a much easier device, known as “sub-calibration” is applicable in the
case of classical area-minimal cones and we refer to the papers of Lawson [6], Miranda
[8], Massari-Miranda [7], Morgan [9], Davini [2] and in particular to De Philippis and
Paolini [3] for more pertinent information.
We show here, that many of the 𝛼-stable cones can be “sub-calibrated” with respect to
the functional E𝛼 and are hence also minimizers for E𝛼 in a very general sense. The
simplified proof which will be presented here, follows the approach by De Philippis
and Paolini [3] and hence we may omit some of the details, referring to their paper [3].
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1. 𝜶-Subminimal Sets and Minimal Cones

Let 𝐸 ⊂ R𝑛 be a measurable andΩ ⊂ R𝑛 be an open set. We define the “𝛼-perimeter”
of 𝐸 in Ω as

𝑃𝛼 (𝐸,Ω) := sup
{ ∫

𝐸

div{|𝑥 |𝛼𝑔}𝑑𝑥; 𝑔 ∈ 𝐶1
𝑐 (Ω,R𝑛) with |𝑔(𝑥) | ≤ 1

}
.

Note that 𝑃𝛼 (𝐸,Ω) is well defined (and possibly infinite) for all 𝛼 ∈ R and measurable
sets 𝐸 . However we have

Proposition 1. Let 𝛼 + 𝑛 > 1 and suppose 𝜕𝐸 is of class 𝐶2. Then 𝑃𝛼 (𝐸,Ω) =∫
𝜕𝐸∩Ω |𝑥 |𝛼𝑑H𝑛−1 < ∞, for every bounded open set Ω ⊂ R𝑛.

Remark. Clearly, if 0 ∉ 𝜕𝐸 and Ω is bounded, then
∫
𝜕𝐸∩Ω |𝑥 |𝛼𝑑H𝑛−1 is always

finite, independet of the value of 𝛼 ∈ R.

Proof. Let 𝑔 ∈ 𝐶1
𝑐 (Ω,R𝑛), |𝑔(𝑥) | ≤ 1 be arbitrary, then

div
(
|𝑥 |𝛼𝑔

)
= 𝛼 |𝑥 |𝛼−2(𝑥 · 𝑔) + |𝑥 |𝛼div𝑔

which is a function of Lebesgue-class 𝐿1(Ω), if 𝛼 + 𝑛 > 1. Denoting by 𝜑𝐸 the charac-
teristic function of 𝐸 , we obtain for arbitrary 𝜀 > 0 and ball 𝐵𝜀 = 𝐵𝜀 (0) ⊂ R𝑛 with
center zero,∫

𝐸

div
(
|𝑥 |𝛼𝑔

)
𝑑𝑥 =

∫
Ω

𝜑𝐸div
(
|𝑥 |𝛼𝑔

)
𝑑𝑥 =∫

Ω−𝐵𝜀

𝜑𝐸div
(
|𝑥 |𝛼𝑔

)
𝑑𝑥 +

∫
𝐵𝜀

𝜑𝐸div
(
|𝑥 |𝛼𝑔

)
𝑑𝑥 =∫

𝜕𝐸−𝐵𝜀

|𝑥 |𝛼 (𝑔 · 𝜈)𝑑H𝑛−1 +
∫
𝜕𝐵𝜀∩𝐸

|𝑥 |𝛼 (𝑔 · 𝜈𝜀)𝑑H𝑛−1 +
∫
𝐵𝜀

𝜑𝐸div
(
|𝑥 |𝛼𝑔

)
𝑑𝑥,

where 𝜈 and 𝜈𝜀 stand for the exterior - or interior unit normals of 𝜕𝐸 and 𝜕𝐵𝜀 respect-
ively. By assumption 𝛼 + 𝑛 > 1, thus the last two integrals tend to zero, as 𝜀 ↘ 0,
whence

𝑃𝛼 (𝐸,Ω) ≤
∫
𝜕𝐸

|𝑥 |𝛼𝑑H𝑛−1.

On the other hand, since by assumption 𝜈 is of class 𝐶1 on the boundary 𝜕𝐸 , we may
extend 𝜈 = 𝜈(𝑥) to some function 𝑁 ∈ 𝐶1(R𝑛,R𝑛) such that |𝑁 (𝑥) | ≤ 1 for all 𝑥 ∈ R𝑛.
Take some function 𝜂 ∈ 𝐶1

𝑐 (Ω,R) with |𝜂(𝑥) | ≤ 1 for all 𝑥 ∈ Ω and put
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𝑔 := 𝜂𝑁 ∈ 𝐶1
𝑐 (Ω,R𝑛), then we have for every 𝜀 > 0 the relation∫

𝐸

div
(
|𝑥 |𝛼𝑔

)
𝑑𝑥 =

∫
Ω

𝜑𝐸div
(
|𝑥 |𝛼𝑔

)
𝑑𝑥 =∫

Ω−𝐵𝜀

𝜑𝐸div
(
|𝑥 |𝛼𝑔

)
𝑑𝑥 +

∫
𝐵𝜀

𝜑𝐸div
(
|𝑥 |𝛼𝑔

)
𝑑𝑥 =∫

𝜕𝐸−𝐵𝜀

|𝑥 |𝛼𝜂𝑑H𝑛−1 +
∫
𝜕𝐵𝜀∩𝐸

|𝑥 |𝛼𝜂(𝑁 · 𝜈𝜀)𝑑H𝑛−1 +
∫
𝐵𝜀

𝜑𝐸div
(
|𝑥 |𝛼𝑔

)
𝑑𝑥.

By virtue of 𝛼 + 𝑛 > 1 and upon letting 𝜀 ↘ 0 we find∫
𝐸

div
(
|𝑥 |𝛼𝑔

)
𝑑𝑥 =

∫
𝜕𝐸

|𝑥 |𝛼𝜂𝑑H𝑛−1,

whence also
𝑃𝛼 (𝐸,Ω) ≥

∫
𝜕𝐸

|𝑥 |𝛼𝑑H𝑛−1.

To see the finiteness of both integrals we assume w.l.o.g. that - locally near zero - 𝜕𝐸
is described by some 𝐶2-function 𝑥𝑛 = 𝜓(𝑥1, . . . , 𝑥𝑛−1) and that 𝛼 < 0. Then we have∫

𝜕𝐸∩𝐵𝑅 (0)
|𝑥 |𝛼𝑑H𝑛−1 ≤

∫
𝐵𝑅 (0)

(
𝑥2

1 + . . . + 𝑥2
𝑛−1

)𝛼/2√︁1 + |𝐷𝜓 |2𝑑𝑥1 . . . 𝑑𝑥𝑛−1 ≤

≤ const
∫ 𝑅

0
𝑟𝛼+𝑛−2𝑑𝑟 < ∞, since 𝛼 + 𝑛 > 1.

Definition 1. A measurable set 𝐸 ⊂ R𝑛 is a “local minimum for 𝑃𝛼 ( · )” in
Ω ⊂ R𝑛, or simply “𝛼-minimal in Ω”, if for all open, boundet sets 𝐴 ⊂ Ω

𝑃𝛼 (𝐸, 𝐴) ≤ 𝑃𝛼 (𝐹, 𝐴)

for every measurable set 𝐹, such that the symmetric difference 𝐸Δ𝐹 ⊂⊂ 𝐴 (i.e. the
closure 𝐸Δ𝐹 ⊂ 𝐴).
𝐸 is called “𝛼-subminimal in Ω”, if for all bounded open 𝐴 ⊂ Ω we have

𝑃𝛼 (𝐸, 𝐴) ≤ 𝑃𝛼 (𝐹, 𝐴)

for every measurable set 𝐹 ⊂ 𝐸 , such that 𝐸 \ 𝐹 ⊂⊂ 𝐴.

Theorem 1. The cones 𝐶𝑚 =
{
(𝑥, 𝑦) ∈ R𝑚 × R𝑚; |𝑥 | ≤ |𝑦 |

}
are 𝛼-minimal in R𝑛,

𝑛 = 2𝑚, provided 𝑚 + 𝛼 ≥ 4.
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Remark. Combining Theorem 3.1 of [4] and Theorem 1 we conclude that the
cone

𝐶2 =
{
(𝑥, 𝑦) ∈ R2 × R2; |𝑥 | ≤ |𝑦 |

}
has least 𝛼-perimeter 𝑃𝛼 in R4 for all 𝛼 ≥ 1, in other words, the cone over the Clifford
torus 𝑆1 × 𝑆1 in R4 minimizes E𝛼 for any 𝛼 ≥ 1. Conversely, there are no non-trivial
stable cones in R4 with vertex at zero for every 𝛼 < 1, according to Theorem 2.3 in [4].

For the proof of the Theorem we present three Propositions, which follow immedi-
ately from [3].

Proposition 2. Let 𝛼 + 𝑛 > 1 and suppose 𝐸 ⊂ R𝑛 and its complement 𝐸𝑐 := Ω \ 𝐸
are both 𝛼-subminimal in Ω, then 𝐸 is 𝛼-minimal in Ω.

Proof. We first claim that, since 𝛼 + 𝑛 > 1, it follows that 𝑃𝛼 (𝐸,Ω) = 𝑃𝛼 (𝐸𝑐,Ω).
Indeed, arguing as in Proposition 1 and because of div

(
|𝑥 |𝛼𝑔

)
∈ 𝐿1(Ω) for any 𝑔 ∈

𝐶1
𝑐 (Ω,R𝑛), |𝑔(𝑥) | ≤ 1, 𝛼 + 𝑛 > 1, we obtain that∫

Ω

div
(
|𝑥 |𝛼𝑔

)
𝑑𝑥 = 0.

Therefore∫
Ω

𝜑𝐸div
(
|𝑥 |𝛼𝑔

)
𝑑𝑥 =

∫
Ω

(𝜑𝐸 − 1)div
(
|𝑥 |𝛼𝑔

)
𝑑𝑥 = −

∫
Ω

𝜑𝐸𝑐div
(
|𝑥 |𝛼𝑔

)
𝑑𝑥,

where 𝜑𝐸𝑐 stands for the characteristic function of the complement 𝐸𝑐 = Ω \ 𝐸 . Hence
we have equality 𝑃𝛼 (𝐸,Ω) = 𝑃𝛼 (𝐸𝑐,Ω) and the proof can be completed as in Propos-
ition 1.2 of the paper [3].

Proposition 3. Let 𝛼 + 𝑛 > 1 and suppose 𝐸𝑘 ⊂ 𝐸, 𝑘 ∈ N, are measurable, 𝛼-
subminimal sets in Ω ⊂ R𝑛 for all 𝑘 ∈ N. In addition assume that 𝐸𝑘 → 𝐸 in 𝐿1,loc(Ω)
as 𝑘 → ∞, then also 𝐸 is 𝛼-subminimal in Ω.

Proof. We only show the lower-semicontinuity of the 𝛼-perimeter, since the rest
of the proof follows as in Proposition 1.3 of [3] To this end suppose 𝜑𝐸𝑘

→ 𝜑𝐸 in
𝐿1,loc(Ω).
For 𝑔 ∈ 𝐶1

𝑐 (Ω,R𝑛), |𝑔(𝑥) | ≤ 1 and 𝛼 + 𝑛 > 1 we first have div
(
|𝑥 |𝛼𝑔

)
∈ 𝐿1(Ω) and∫

Ω

(
𝜑𝐸𝑘

− 𝜑𝐸

)
div

(
|𝑥 |𝛼𝑔

)
𝑑𝑥 =

∫
𝐸𝑘−𝐸

div
(
|𝑥 |𝛼𝑔

)
𝑑𝑥 −

∫
𝐸−𝐸𝑘

div
(
|𝑥 |𝛼𝑔

)
𝑑𝑥 → 0,
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as 𝑘 → ∞. Whence∫
Ω

𝜑𝐸div
(
|𝑥 |𝛼𝑔

)
𝑑𝑥 = lim

𝑘→∞

∫
Ω

𝜑𝐸𝑘
div

(
|𝑥 |𝛼𝑔

)
𝑑𝑥 ≤

≤ lim inf
𝑘→∞

𝑃𝛼

(
𝐸𝑘 ,Ω

)
,

and the semicontinuity of 𝑃𝛼 follows. Now we can argue as in Proposition 1.3 of [3]
We skip over the details.

Definition 2. Let Ω ⊂ R𝑛 − {0} be open and 𝐸 ⊂ Ω be measurable with boundary
𝜕𝐸 of class 𝐶2. A vectorfield 𝜉 ∈ 𝐶1 (Ω,R𝑛

)
is an “𝛼-subcalibration” of 𝐸 (or 𝜕𝐸) in

Ω, if we have

i) For all 𝑥 ∈ 𝜕𝐸, 𝜉 (𝑥) = 𝜈(𝑥)= exterior unit normal of 𝜕𝐸 at 𝑥.

ii) div
(
|𝑥 |𝛼𝜉 (𝑥)

)
≤ 0 for all 𝑥 ∈ 𝐸 ∩Ω.

iii) |𝜉 (𝑥) | ≤ 1 for all 𝑥 ∈ Ω.

Proposition 4. Suppose 𝐸 ⊂ Ω has boundary of class 𝐶2 and admits an 𝛼-
subcalibration in Ω ⊂ 𝑅𝑛 − {0}. Then 𝐸 is 𝛼-subminimal in Ω, i.e. 𝑃𝛼 (𝐸, 𝐴) ≤
𝑃𝛼 (𝐹, 𝐴) for every bounded, open set 𝐴 ⊂ Ω and all measurable 𝐹 ⊂ 𝐸 with 𝐸 \ 𝐹 ⊂⊂
𝐴.

Proof. Analogous to Theorem 1.5 in [3] with perimeter replaced by 𝛼-perimeter.

We now turn to the

Proof of Theorem 1. The idea is to approximate the cone 𝐶𝑚 with a sequence
of smooth sets 𝐸𝑘 which admit 𝛼-subcalibrations. By Propositions 4 and 3 it follows
that 𝐸 itself is 𝛼-subminimal. Again the same reasoning applies to the complement
𝐶𝑐
𝑚 = R𝑛 − 𝐶𝑚 and hence the cone 𝐶𝑚 is 𝛼-minimal by Proposition 2.

To this end consider the function 𝑓 : R𝑚 × R𝑚 → R, (𝑥, 𝑦) ↦→ 𝑓 (𝑥, 𝑦) := |𝑥 |4−|𝑦 |4
4 ,

𝑥, 𝑦 ∈ R𝑚. Obviously

𝐶𝑚 =
{
(𝑥, 𝑦) ∈ R𝑚 × R𝑚; 𝑓 (𝑥, 𝑦) ≤ 0

}
and for every 𝑘 ∈ N we put

𝐸𝑘 :=
{
(𝑥, 𝑦) ∈ R𝑚 × R𝑚; 𝑓 (𝑥, 𝑦) ≤ −1/𝑘

}
and

𝐹𝑘 :=
{
(𝑥, 𝑦) ∈ R𝑚 × R𝑚; 𝑓 (𝑥, 𝑦) ≤ 1/𝑘

}
.
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Clearly, we have for all 𝑘 ∈ N

𝐸𝑘 ⊂ 𝐶𝑚 ⊂ 𝐹𝑘 and

𝐸𝑘 →𝐶𝑚, 𝐹𝑘 →𝐶𝑚 both in 𝐿1,loc(R𝑛) as 𝑘 →∞ and the complement 𝐹𝑐
𝑘
= R𝑛 \ 𝐹𝑘 ⊂

𝐶𝑐
𝑚 and 𝐹𝑐

𝑘
→ R𝑛 − 𝐶𝑚 = 𝐶𝑐

𝑚 in 𝐿1,loc(R𝑛) as 𝑘 → ∞.
Additionally, all boundaries in 𝜕𝐸𝑘 , 𝜕𝐹

𝑐
𝑘

are smooth hypersurfaces in R𝑛 and are all
𝛼-subminimal in R𝑛. Indeed, we claim that the vectorfield

𝜉 (𝑥, 𝑦) := ± 𝐷 𝑓 (𝑥, 𝑦)
|𝐷 𝑓 (𝑥, 𝑦) |

defines an 𝛼-subcalibration for both 𝐸𝑘 and 𝐹𝑐
𝑘

in R𝑛 − {0} respectively, i.e. we have
i), ii) and iii) of Definition 2 for all 𝐸𝑘 and 𝐹𝑐

𝑘
, 𝑘 ∈ N.

While i) and iii) are obviously fulfilled in both cases, ii) needs a simple calculation:
If 𝑓 (𝑥, 𝑦) = |𝑥 |4−|𝑦 |4

4 we find successively

𝑓𝑥 = |𝑥 |2𝑥, 𝑓𝑦 = −|𝑦 |2𝑦, |𝐷 𝑓 |2 = |𝑥 |6 + |𝑦 |6

𝑓𝑥𝑖 𝑥 𝑗
= 2𝑥𝑖𝑥 𝑗 + 𝛿𝑖 𝑗 |𝑥 |2, 𝑓𝑦𝑖𝑦 𝑗

= −2𝑦𝑖𝑦 𝑗 − 𝛿𝑖 𝑗 |𝑦 |2,
𝑓𝑥𝑖𝑦 𝑗

= 0

for all indices 𝑖, 𝑗 = 1, . . . , 𝑚. Also, for (𝑥, 𝑦) ≠ (0, 0) we have | (𝑥, 𝑦) |𝛼 =
(
|𝑥 |2 +

|𝑦 |2
)𝛼/2

, 𝐷 | (𝑥, 𝑦) |𝛼 = 𝛼 | (𝑥, 𝑦) |𝛼−2(𝑥, 𝑦), 𝐷 𝑓

|𝐷 𝑓 | =

(
|𝑥 |2𝑥,−|𝑦 |2𝑦

)(
|𝑥 |6+|𝑦 |6

)1/2 and

|𝐷 𝑓 |3div
( 𝐷 𝑓

|𝐷 𝑓 |

)
=
(
|𝑥 |4 − |𝑦 |4

) {
(𝑚 − 1) |𝑥 |4 − (𝑚 + 2) |𝑥 |2 |𝑦 |2 + (𝑚 − 1) |𝑦 |4

}
,

whence

|𝐷 𝑓 |3div
[
| (𝑥, 𝑦) |𝛼 𝐷 𝑓

|𝐷 𝑓 |

]
=

𝛼 |𝐷 𝑓 |2 | (𝑥, 𝑦) |𝛼−2 [|𝑥 |4 − |𝑦 |4
]
+
(
|𝑥 |2 + |𝑦 |2

)𝛼/2·{(
|𝑥 |4 − |𝑦 |4

) [
(𝑚 − 1) |𝑥 |4 − (𝑚 + 2) |𝑥 |2 |𝑦 |2 + (𝑚 − 1) |𝑦 |4

]}
=

𝛼 | (𝑥, 𝑦) |𝛼−2 [|𝑥 |4 − |𝑦 |4
] (
|𝑥 |6 + |𝑦 |6

)
+ |(𝑥, 𝑦) |𝛼

(
|𝑥 |4 − |𝑦 |4

) [
(𝑚 − 1) |𝑥 |4 − (𝑚 + 2) |𝑥 |2 |𝑦 |2 + (𝑚 − 1) |𝑦 |4

]
=

| (𝑥, 𝑦) |𝛼−2 ( |𝑥 |4 − |𝑦 |4
) {
(𝑚 − 1 + 𝛼) |𝑥 |6 − 3|𝑥 |4 |𝑦 |2 − 3|𝑥 |2 |𝑦 |4 + (𝑚 − 1 + 𝛼) |𝑦 |6

}
.

Upon putting 𝑡 := |𝑥 |2
|𝑦 |2 we see that the sign of div

[
| (𝑥, 𝑦) |𝛼 𝐷 𝑓

|𝐷 𝑓 |
]

is the same as of

𝑓 (𝑥, 𝑦) = |𝑥 |4−|𝑦 |4
4 provided the polynomial

𝑝𝑚,𝛼 (𝑡) := (𝑚 − 1 + 𝛼)𝑡3 − 3𝑡2 − 3𝑡 + (𝑚 − 1 + 𝛼)
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is nonnegative for all 𝑡 ≥ 0. Since for every 𝑡 ≥ 0 we have 3𝑡3 − 3𝑡2 − 3𝑡 + 3 ≥ 0 (with
zero minimum for 𝑡 ≥ 0 at 𝑡 = 1) it also follows that 𝑝𝑚,𝛼 (𝑡) ≥ 0 for all 𝑡 ≥ 0, if we
assume that (𝑚 − 1 + 𝛼) ≥ 3.
Concluding we have shown that the vectorfield 𝜉 (𝑥, 𝑦) = 𝐷 𝑓 (𝑥,𝑦)

|𝐷 𝑓 (𝑥,𝑦) | defines an 𝛼-
subcalibration for the sets 𝐸𝑘 in R𝑛 − {0}, 𝑘 ∈ N, while −𝜉 (𝑥, 𝑦) furnishes an 𝛼-
subcalibration for the sets 𝐹𝑐

𝑘
= R𝑛 − 𝐹𝑘 in R𝑛 − {0}. Proposition 4 yields the 𝛼-

subminimality of the sets 𝐸𝑘 and 𝐹𝑐
𝑘

in R𝑛 − {0} respectively. However, 0 ∉ 𝐸𝑘 or
𝐹𝑐
𝑘

and we have 𝑃𝛼 (𝐸𝑘 , 𝐴) = 𝑃𝛼 (𝐸𝑘 , 𝐴 − {0}) ≤ 𝑃𝛼 (𝐹, 𝐴 − {0}) ≤ 𝑃𝛼 (𝐹, 𝐴) for
every bounded open set 𝐴 ⊂ R𝑛 and arbitrary 𝐹 ⊂ 𝐸𝑘 with 𝐸𝑘 \ 𝐹 ⊂⊂ 𝐴, which shows
that all sets 𝐸𝑘 are also 𝛼-subminimal in all of R𝑛 (rather that just in R𝑛 − {0}). A
similar argument implies the 𝛼-subminimality of 𝐹𝑐

𝑘
in R𝑛 and since 𝐸𝑘 → 𝐶𝑚 or

𝐹𝑐
𝑘
→ R𝑛 − 𝐶𝑚 both in 𝐿1,loc(R𝑛) as 𝑘 → ∞, we infer from Proposition 3 that 𝐶𝑚 as

well as its complement 𝐶𝑐
𝑚 = R𝑛 − 𝐶𝑚 are both 𝛼-subminimal in R𝑛. An application

of Proposition 2 concludes the proof of the Theorem 1.

Remark. Using the same type of argument as in the proof of Theorem 3.1 one
can also deal with the minimal cones

𝐶𝑚,𝑘 =
{
(𝑥, 𝑦) ∈ R𝑚 × R𝑘 ; (𝑘 − 1) |𝑥 |2 ≤ (𝑚 − 1) |𝑦 |2

}
.

A subcalibration might then be determined by the normalized gradient of the function

𝑓 : R𝑚 × R𝑘 → R, 𝑓 (𝑥, 𝑦) :=
1
4
(
(𝑘 − 1)2 |𝑥 |4 − (𝑚 − 1)2 |𝑦 |4

)
under suitable conditions on 𝑚 and 𝑘 , however we shall not dwell on this.

References

[1] E. Bombieri, E. De Giorgi, E. Giusti, Minimal cones and the Bernstein problem. Invent.
Math 7 (1969), 243–268.

[2] A. Davini, On calibrations for Lawson’s cones. Rend. Sem. Mat. Univ. Padova 111 (2004),
55–70.

[3] G. De Philippis, E. Paolini, A short proof of the minimality of Simons cone. Rend. Sem.
Mat. Univ. Padova 121 (2009), 233–241.

[4] U. Dierkes, G. Huisken, The 𝑛-dimensional analogue of a variational problem of Euler.
Math. Ann. https://doi.org/10.1007/s00208-023-02726-3.

[5] L. Euler, Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive
solutio problematis isoperimetrici latissimo sensu accepti. Lausanne et Genevae 1744.

[6] H. B. Lawson, The equivariant Plateau problem and interior regularity. Trans. Am. Math.
Soc. 173 (1972), 231–249.

https://doi.org/10.1007/s00208-023-02726-3


Minimal Cones and a Problem of Euler 9

[7] U. Massari, M. Miranda, A remark on minimal cones Bol. Un. Mat. Ital. 6 (1983),
123–125.

[8] M. Miranda, Superficie minime e il problema di Plateau. Quaderni di Matematica, Dipart.
di Mat., Univ. de Lecce (2006).

[9] F. Morgan, The cone over the Clifford torus in R4 is Φ-minimizing. Math. Ann. 289 (1991),
341–354.


	Introduction
	1. α-Subminimal Sets and Minimal Cones
	References

