Minimal Cones and a Problem of Euler

Ulrich Dierkes (*)

ABSTRACT – The minimal cones $C = \{(x, y) \in \mathbb{R}^m \times \mathbb{R}^m; |x| \le |y|\}$ are shown to minimize the weighted perimeter $P_{\alpha}(E) = \int |x|^{\alpha} |D\varphi_E|, \alpha \in \mathbb{R}, E \subset \mathbb{R}^m \times \mathbb{R}^m$, whenever $m + \alpha \ge 4$. This completes and improves recent results of Dierkes and Huisken [4].

MATHEMATICS SUBJECT CLASSIFICATION 2020 – 53A10, 49Q05, 35A15.

KEYWORDS - Minimal Cones, weighted Perimeter.

Introduction

Here we consider the *n*-dimensional analogue of a problem already investigated by Leonhard Euler [5], namely the variational integral

$$\mathcal{E}_{\alpha}(M) \coloneqq \int_{M} |x|^{\alpha} d\mathcal{H}_{n-1} \quad , \alpha \in \mathbb{R},$$

where $M \subset \mathbb{R}^n$ denotes some smooth hypersurface and \mathcal{H}_k stands for the *k*-dimensional Hausdorff measure. *M* is called "*stationary with respect to* \mathcal{E}_{α} " or simply " α -*stationary*", if the first variation $\delta \mathcal{E}_{\alpha}(M, X)$ vanishes, and a stationary surface *M* is called " α -*stable*" if the second variation $\delta^2 \mathcal{E}_{\alpha}(M, X)$ is nonnegative for suitable variations *X* of *M*. Standard computations show that *M* is α -stationary, iff the mean curvature H(x) and the unit normal $\nu = \nu(x)$ of *M* at $x \in M$ respectively satisfy

$$H(x) = \alpha |x|^{-2} \langle x, v \rangle, \ x \neq 0,$$

(*) *Indirizzo dell'A*.: Faculty of Mathematics, University of Duisburg-Essen, Thea-Leymann-Str. 9, 45127 Essen, Germany; ulrich.dierkes@uni-due.de

while in addition *M* is also α -stable, if for all $\xi \in C_c^1(M, \mathbb{R})$ we have

(0.1)
$$\int_{M} |x|^{\alpha} \left\{ \frac{2}{\alpha} H^{2} + |A|^{2} \right\} \xi^{2} d\mathcal{H}_{n-1} \leq \int_{M} |x|^{\alpha} \left\{ \alpha |x|^{-2} \xi^{2} + |\nabla \xi|^{2} \right\} d\mathcal{H}_{n-1}$$

where |A| denotes the length of the second fundamental form A of M, cp. Proposition 1.1 and 1.4 in [4].

In particular, if C = closure M is a cone in \mathbb{R}^n with only singularity at zero and if $M \coloneqq C - \{0\}$ is α -stationary, then C is called α -stable, if (0.1) holds for all $\xi \in C_c^1(M, \mathbb{R})$. Obviously, every area-minimal cone C in \mathbb{R}^n (i.e. H = 0 on $C - \{0\}$) such that $0 \in C$ and $C - \{0\}$ is a regular hypersurface is α -stationary and we have the following stability result

THEOREM. ([4]) Let $\alpha > 3 - n$ and suppose $C \subset \mathbb{R}^n$ is an α -stationary cone with vertex at the origin and such that $(n - 3 + \alpha)^2 \ge 4|x|^2|A|^2 - 4\alpha$. Then C is also α -stable.

(Note that the dimension of the cone *C* here is (n - 1) rather than *n* in the paper [4].)

In particular the cone over the Clifford torus $S^1 \times S^1 \subset \mathbb{R}^2 \times \mathbb{R}^2$ is stable for all $\alpha \ge 1$. (Here n = 4 and $|A|^2 = 2|x|^{-2}$). Furthermore the 7-dimensional cones over products of spheres $S^1 \times S^5$, $S^2 \times S^4$ and $S^3 \times S^3$ are all α -stable, whenever $\alpha \ge \sqrt{48} - 7$, cp. the list in Corollary 2.2 of [4].

Moreover it could be shown in Theorem 3.1 of [4] that all cones

$$C_m = \{(x_1, \dots, x_{2m}) \in \mathbb{R}^m \times \mathbb{R}^m; x_1^2 + \dots + x_m^2 \le x_{m+1}^2 + \dots + x_{2m}^2\}$$

minimize the integral \mathcal{E}_{α} in a suitable sense, if $1 \le \alpha \le 2(m-1)$. So in particular the cone over the Clifford torus $S^1 \times S^1$ minimizes \mathcal{E}_{α} , if $1 \le \alpha \le 2$.

The proof of these results uses a Weierstraß-Schwarz foliation type of argument, as it was introduced in the celebrated paper by Bombieri, De Giorgi and Giusti [1]. In fact, under the prescribed conditions on α and *m* the cones can be embedded in a *"field"* or *"calibration"* consisting of α -stationary surfaces. On the other hand, it is known since long, that a much easier device, known as *"sub-calibration"* is applicable in the case of classical area-minimal cones and we refer to the papers of Lawson [6], Miranda [8], Massari-Miranda [7], Morgan [9], Davini [2] and in particular to De Philippis and Paolini [3] for more pertinent information.

We show here, that many of the α -stable cones can be "sub-calibrated" with respect to the functional \mathcal{E}_{α} and are hence also minimizers for \mathcal{E}_{α} in a very general sense. The simplified proof which will be presented here, follows the approach by De Philippis and Paolini [3] and hence we may omit some of the details, referring to their paper [3].

1. α -Subminimal Sets and Minimal Cones

Let $E \subset \mathbb{R}^n$ be a measurable and $\Omega \subset \mathbb{R}^n$ be an open set. We define the " α -perimeter" of E in Ω as

$$P_{\alpha}(E, \Omega) \coloneqq \sup \left\{ \int_{E} \operatorname{div}\{|x|^{\alpha}g\} dx; \quad g \in C_{c}^{1}(\Omega, \mathbb{R}^{n}) \text{ with } |g(x)| \leq 1 \right\}.$$

Note that $P_{\alpha}(E, \Omega)$ is well defined (and possibly infinite) for all $\alpha \in \mathbb{R}$ and measurable sets *E*. However we have

PROPOSITION 1. Let $\alpha + n > 1$ and suppose ∂E is of class C^2 . Then $P_{\alpha}(E, \Omega) = \int_{\partial F \cap \Omega} |x|^{\alpha} d\mathcal{H}_{n-1} < \infty$, for every bounded open set $\Omega \subset \mathbb{R}^n$.

REMARK. Clearly, if $0 \notin \partial E$ and Ω is bounded, then $\int_{\partial E \cap \Omega} |x|^{\alpha} d\mathcal{H}_{n-1}$ is always finite, independent of the value of $\alpha \in \mathbb{R}$.

PROOF. Let $g \in C_c^1(\Omega, \mathbb{R}^n), |g(x)| \le 1$ be arbitrary, then

$$\operatorname{div}(|x|^{\alpha}g) = \alpha |x|^{\alpha-2}(x \cdot g) + |x|^{\alpha} \operatorname{div} g$$

which is a function of Lebesgue-class $L_1(\Omega)$, if $\alpha + n > 1$. Denoting by φ_E the characteristic function of *E*, we obtain for arbitrary $\varepsilon > 0$ and ball $B_{\varepsilon} = B_{\varepsilon}(0) \subset \mathbb{R}^n$ with center zero,

$$\int_{E} \operatorname{div}(|x|^{\alpha}g)dx = \int_{\Omega} \varphi_{E} \operatorname{div}(|x|^{\alpha}g)dx =$$

$$\int_{\Omega-B_{\varepsilon}} \varphi_{E} \operatorname{div}(|x|^{\alpha}g)dx + \int_{B_{\varepsilon}} \varphi_{E} \operatorname{div}(|x|^{\alpha}g)dx =$$

$$\int_{\partial E-B_{\varepsilon}} |x|^{\alpha}(g \cdot \nu)d\mathcal{H}_{n-1} + \int_{\partial B_{\varepsilon} \cap E} |x|^{\alpha}(g \cdot \nu_{\varepsilon})d\mathcal{H}_{n-1} + \int_{B_{\varepsilon}} \varphi_{E} \operatorname{div}(|x|^{\alpha}g)dx,$$

where v and v_{ε} stand for the exterior - or interior unit normals of ∂E and ∂B_{ε} respectively. By assumption $\alpha + n > 1$, thus the last two integrals tend to zero, as $\varepsilon \searrow 0$, whence

$$P_{\alpha}(E,\Omega) \leq \int_{\partial E} |x|^{\alpha} d\mathcal{H}_{n-1}.$$

On the other hand, since by assumption ν is of class C^1 on the boundary ∂E , we may extend $\nu = \nu(x)$ to some function $N \in C^1(\mathbb{R}^n, \mathbb{R}^n)$ such that $|N(x)| \le 1$ for all $x \in \mathbb{R}^n$. Take some function $\eta \in C_c^1(\Omega, \mathbb{R})$ with $|\eta(x)| \le 1$ for all $x \in \Omega$ and put $g \coloneqq \eta N \in C_c^1(\Omega, \mathbb{R}^n)$, then we have for every $\varepsilon > 0$ the relation

$$\int_{E} \operatorname{div}(|x|^{\alpha}g) dx = \int_{\Omega} \varphi_{E} \operatorname{div}(|x|^{\alpha}g) dx =$$

$$\int_{\Omega-B_{\varepsilon}} \varphi_{E} \operatorname{div}(|x|^{\alpha}g) dx + \int_{B_{\varepsilon}} \varphi_{E} \operatorname{div}(|x|^{\alpha}g) dx =$$

$$\int_{\partial E-B_{\varepsilon}} |x|^{\alpha} \eta d\mathcal{H}_{n-1} + \int_{\partial B_{\varepsilon} \cap E} |x|^{\alpha} \eta (N \cdot v_{\varepsilon}) d\mathcal{H}_{n-1} + \int_{B_{\varepsilon}} \varphi_{E} \operatorname{div}(|x|^{\alpha}g) dx.$$

By virtue of $\alpha + n > 1$ and upon letting $\varepsilon \searrow 0$ we find

$$\int_{E} \operatorname{div}(|x|^{\alpha}g) dx = \int_{\partial E} |x|^{\alpha} \eta d\mathcal{H}_{n-1},$$

whence also

$$P_{\alpha}(E,\Omega) \ge \int_{\partial E} |x|^{\alpha} d\mathcal{H}_{n-1}$$

To see the finiteness of both integrals we assume w.l.o.g. that - locally near zero - ∂E is described by some C^2 -function $x_n = \psi(x_1, \dots, x_{n-1})$ and that $\alpha < 0$. Then we have

$$\int_{\partial E \cap B_R(0)} |x|^{\alpha} d\mathcal{H}_{n-1} \leq \int_{B_R(0)} \left(x_1^2 + \ldots + x_{n-1}^2 \right)^{\alpha/2} \sqrt{1 + |D\psi|^2} dx_1 \ldots dx_{n-1} \leq \\ \leq \operatorname{const} \int_0^R r^{\alpha + n-2} dr < \infty, \text{ since } \alpha + n > 1.$$

DEFINITION 1. A measurable set $E \subset \mathbb{R}^n$ is a "local minimum for $P_{\alpha}(\cdot)$ " in $\Omega \subset \mathbb{R}^n$, or simply " α -minimal in Ω ", if for all open, boundet sets $A \subset \Omega$

$$P_{\alpha}(E,A) \le P_{\alpha}(F,A)$$

for every measurable set *F*, such that the symmetric difference $E\Delta F \subset A$ (i.e. the closure $\overline{E\Delta F} \subset A$).

E is called " α -subminimal in Ω ", if for all bounded open $A \subset \Omega$ we have

$$P_{\alpha}(E,A) \le P_{\alpha}(F,A)$$

for every measurable set $F \subset E$, such that $E \setminus F \subset A$.

THEOREM 1. The cones $C_m = \{(x, y) \in \mathbb{R}^m \times \mathbb{R}^m; |x| \le |y|\}$ are α -minimal in \mathbb{R}^n , n = 2m, provided $m + \alpha \ge 4$.

REMARK. Combining Theorem 3.1 of [4] and Theorem 1 we conclude that the cone

$$C_2 = \left\{ (x, y) \in \mathbb{R}^2 \times \mathbb{R}^2; |x| \le |y| \right\}$$

has least α -perimeter P_{α} in \mathbb{R}^4 for all $\alpha \ge 1$, in other words, the cone over the Clifford torus $S^1 \times S^1$ in \mathbb{R}^4 minimizes \mathcal{E}_{α} for any $\alpha \ge 1$. Conversely, there are no non-trivial stable cones in \mathbb{R}^4 with vertex at zero for every $\alpha < 1$, according to Theorem 2.3 in [4].

For the proof of the Theorem we present three Propositions, which follow immediately from [3].

PROPOSITION 2. Let $\alpha + n > 1$ and suppose $E \subset \mathbb{R}^n$ and its complement $E^c \coloneqq \Omega \setminus E$ are both α -subminimal in Ω , then E is α -minimal in Ω .

PROOF. We first claim that, since $\alpha + n > 1$, it follows that $P_{\alpha}(E, \Omega) = P_{\alpha}(E^{c}, \Omega)$. Indeed, arguing as in Proposition 1 and because of $\operatorname{div}(|x|^{\alpha}g) \in L_{1}(\Omega)$ for any $g \in C_{c}^{1}(\Omega, \mathbb{R}^{n}), |g(x)| \leq 1, \alpha + n > 1$, we obtain that

$$\int_{\Omega} \operatorname{div}(|x|^{\alpha}g) dx = 0$$

Therefore

$$\int_{\Omega} \varphi_E \operatorname{div}(|x|^{\alpha}g) dx = \int_{\Omega} (\varphi_E - 1) \operatorname{div}(|x|^{\alpha}g) dx = -\int_{\Omega} \varphi_{E^c} \operatorname{div}(|x|^{\alpha}g) dx,$$

where φ_{E^c} stands for the characteristic function of the complement $E^c = \Omega \setminus E$. Hence we have equality $P_{\alpha}(E, \Omega) = P_{\alpha}(E^c, \Omega)$ and the proof can be completed as in Proposition 1.2 of the paper [3].

PROPOSITION 3. Let $\alpha + n > 1$ and suppose $E_k \subset E, k \in \mathbb{N}$, are measurable, α -subminimal sets in $\Omega \subset \mathbb{R}^n$ for all $k \in \mathbb{N}$. In addition assume that $E_k \to E$ in $L_{1,\text{loc}}(\Omega)$ as $k \to \infty$, then also E is α -subminimal in Ω .

PROOF. We only show the lower-semicontinuity of the α -perimeter, since the rest of the proof follows as in Proposition 1.3 of [3] To this end suppose $\varphi_{E_k} \to \varphi_E$ in $L_{1,\text{loc}}(\Omega)$.

For $g \in C_c^1(\Omega, \mathbb{R}^n)$, $|g(x)| \le 1$ and $\alpha + n > 1$ we first have $\operatorname{div}(|x|^{\alpha}g) \in L_1(\Omega)$ and

$$\int_{\Omega} (\varphi_{E_k} - \varphi_E) \operatorname{div}(|x|^{\alpha}g) dx = \int_{E_k - E} \operatorname{div}(|x|^{\alpha}g) dx - \int_{E - E_k} \operatorname{div}(|x|^{\alpha}g) dx \to 0,$$

as $k \to \infty$. Whence

$$\int_{\Omega} \varphi_E \operatorname{div}(|x|^{\alpha}g) dx = \lim_{k \to \infty} \int_{\Omega} \varphi_{E_k} \operatorname{div}(|x|^{\alpha}g) dx \le \\ \le \liminf_{k \to \infty} P_{\alpha}(E_k, \Omega),$$

and the semicontinuity of P_{α} follows. Now we can argue as in Proposition 1.3 of [3] We skip over the details.

DEFINITION 2. Let $\Omega \subset \mathbb{R}^n - \{0\}$ be open and $E \subset \Omega$ be measurable with boundary ∂E of class C^2 . A vectorfield $\xi \in C^1(\Omega, \mathbb{R}^n)$ is an " α -subcalibration" of E (or ∂E) in Ω , if we have

- i) For all $x \in \partial E$, $\xi(x) = v(x) = exterior$ unit normal of ∂E at x.
- ii) div $(|x|^{\alpha}\xi(x)) \leq 0$ for all $x \in E \cap \Omega$.
- iii) $|\xi(x)| \leq 1$ for all $x \in \Omega$.

PROPOSITION 4. Suppose $E \subset \Omega$ has boundary of class C^2 and admits an α -subcalibration in $\Omega \subset \mathbb{R}^n - \{0\}$. Then E is α -subminimal in Ω , i.e. $P_{\alpha}(E, A) \leq P_{\alpha}(F, A)$ for every bounded, open set $A \subset \Omega$ and all measurable $F \subset E$ with $E \setminus F \subset C$.

PROOF. Analogous to Theorem 1.5 in [3] with perimeter replaced by α -perimeter.

We now turn to the

PROOF OF THEOREM 1. The idea is to approximate the cone C_m with a sequence of smooth sets E_k which admit α -subcalibrations. By Propositions 4 and 3 it follows that E itself is α -subminimal. Again the same reasoning applies to the complement $C_m^c = \mathbb{R}^n - C_m$ and hence the cone C_m is α -minimal by Proposition 2.

To this end consider the function $f : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}, (x, y) \mapsto f(x, y) := \frac{|x|^4 - |y|^4}{4}, x, y \in \mathbb{R}^m$. Obviously

$$C_m = \left\{ (x, y) \in \mathbb{R}^m \times \mathbb{R}^m; \quad f(x, y) \le 0 \right\}$$

and for every $k \in \mathbb{N}$ we put

$$E_k \coloneqq \left\{ (x, y) \in \mathbb{R}^m \times \mathbb{R}^m; f(x, y) \le -1/k \right\}$$

and

$$F_k \coloneqq \{(x, y) \in \mathbb{R}^m \times \mathbb{R}^m; f(x, y) \le 1/k\}.$$

Clearly, we have for all $k \in \mathbb{N}$

$$E_k \subset C_m \subset F_k$$
 and

 $E_k \to C_m, F_k \to C_m$ both in $L_{1,\text{loc}}(\mathbb{R}^n)$ as $k \to \infty$ and the complement $F_k^c = \mathbb{R}^n \setminus F_k \subset C_m^c$ and $F_k^c \to \mathbb{R}^n - C_m = C_m^c$ in $L_{1,\text{loc}}(\mathbb{R}^n)$ as $k \to \infty$.

Additionally, all boundaries in ∂E_k , ∂F_k^c are smooth hypersurfaces in \mathbb{R}^n and are all α -subminimal in \mathbb{R}^n . Indeed, we claim that the vectorfield

$$\xi(x, y) \coloneqq \pm \frac{Df(x, y)}{|Df(x, y)|}$$

defines an α -subcalibration for both E_k and F_k^c in $\mathbb{R}^n - \{0\}$ respectively, i.e. we have i), ii) and iii) of Definition 2 for all E_k and F_k^c , $k \in \mathbb{N}$.

While i) and iii) are obviously fulfilled in both cases, ii) needs a simple calculation: If $f(x, y) = \frac{|x|^4 - |y|^4}{4}$ we find successively

$$f_x = |x|^2 x, f_y = -|y|^2 y, \quad |Df|^2 = |x|^6 + |y|^6$$

$$f_{x_i x_j} = 2x_i x_j + \delta_{ij} |x|^2, f_{y_i y_j} = -2y_i y_j - \delta_{ij} |y|^2,$$

$$f_{x_i y_j} = 0$$

for all indices i, j = 1, ..., m. Also, for $(x, y) \neq (0, 0)$ we have $|(x, y)|^{\alpha} = (|x|^2 + |y|^2)^{\alpha/2}, D|(x, y)|^{\alpha} = \alpha |(x, y)|^{\alpha-2}(x, y), \quad \frac{Df}{|Df|} = \frac{(|x|^2 x, -|y|^2 y)}{(|x|^6 + |y|^6)^{1/2}}$ and

$$|Df|^{3} \operatorname{div}\left(\frac{Df}{|Df|}\right) = \left(|x|^{4} - |y|^{4}\right) \left\{(m-1)|x|^{4} - (m+2)|x|^{2}|y|^{2} + (m-1)|y|^{4}\right\}.$$

whence

$$\begin{split} |Df|^{3} \operatorname{div} \Big[|(x, y)|^{\alpha} \frac{Df}{|Df|} \Big] &= \\ \alpha |Df|^{2} |(x, y)|^{\alpha - 2} \Big[|x|^{4} - |y|^{4} \Big] + (|x|^{2} + |y|^{2})^{\alpha/2} \cdot \\ & \left\{ (|x|^{4} - |y|^{4}) \Big[(m - 1)|x|^{4} - (m + 2)|x|^{2}|y|^{2} + (m - 1)|y|^{4} \Big] \right\} = \\ \alpha |(x, y)|^{\alpha - 2} \Big[|x|^{4} - |y|^{4} \Big] (|x|^{6} + |y|^{6}) \\ &+ |(x, y)|^{\alpha} (|x|^{4} - |y|^{4}) \Big[(m - 1)|x|^{4} - (m + 2)|x|^{2}|y|^{2} + (m - 1)|y|^{4} \Big] = \\ |(x, y)|^{\alpha - 2} (|x|^{4} - |y|^{4}) \Big\{ (m - 1 + \alpha)|x|^{6} - 3|x|^{4}|y|^{2} - 3|x|^{2}|y|^{4} + (m - 1 + \alpha)|y|^{6} \Big\}. \end{split}$$

Upon putting $t \coloneqq \frac{|x|^2}{|y|^2}$ we see that the sign of div $\left[|(x, y)|^{\alpha} \frac{Df}{|Df|}\right]$ is the same as of $f(x, y) = \frac{|x|^4 - |y|^4}{4}$ provided the polynomial

$$p_{m,\alpha}(t) \coloneqq (m-1+\alpha)t^3 - 3t^2 - 3t + (m-1+\alpha)$$

U. Dierkes

is nonnegative for all $t \ge 0$. Since for every $t \ge 0$ we have $3t^3 - 3t^2 - 3t + 3 \ge 0$ (with zero minimum for $t \ge 0$ at t = 1) it also follows that $p_{m,\alpha}(t) \ge 0$ for all $t \ge 0$, if we assume that $(m - 1 + \alpha) \ge 3$.

Concluding we have shown that the vectorfield $\xi(x, y) = \frac{Df(x,y)}{|Df(x,y)|}$ defines an α -subcalibration for the sets E_k in $\mathbb{R}^n - \{0\}$, $k \in \mathbb{N}$, while $-\xi(x, y)$ furnishes an α -subcalibration for the sets $F_k^c = \mathbb{R}^n - F_k$ in $\mathbb{R}^n - \{0\}$. Proposition 4 yields the α -subminimality of the sets E_k and F_k^c in $\mathbb{R}^n - \{0\}$ respectively. However, $0 \notin E_k$ or F_k^c and we have $P_\alpha(E_k, A) = P_\alpha(E_k, A - \{0\}) \leq P_\alpha(F, A - \{0\}) \leq P_\alpha(F, A)$ for every bounded open set $A \subset \mathbb{R}^n$ and arbitrary $F \subset E_k$ with $E_k \setminus F \subset A$, which shows that all sets E_k are also α -subminimal in all of \mathbb{R}^n (rather that just in $\mathbb{R}^n - \{0\}$). A similar argument implies the α -subminimality of F_k^c in \mathbb{R}^n and since $E_k \to C_m$ or $F_k^c \to \mathbb{R}^n - C_m$ both in $L_{1,\text{loc}}(\mathbb{R}^n)$ as $k \to \infty$, we infer from Proposition 3 that C_m as well as its complement $C_m^c = \mathbb{R}^n - C_m$ are both α -subminimal in \mathbb{R}^n . An application of Proposition 2 concludes the proof of the Theorem 1.

REMARK. Using the same type of argument as in the proof of Theorem 3.1 one can also deal with the minimal cones

$$C_{m,k} = \{ (x, y) \in \mathbb{R}^m \times \mathbb{R}^k; \quad (k-1)|x|^2 \le (m-1)|y|^2 \}.$$

A subcalibration might then be determined by the normalized gradient of the function

$$f: \mathbb{R}^m \times \mathbb{R}^k \to \mathbb{R}, f(x, y) \coloneqq \frac{1}{4} \left((k-1)^2 |x|^4 - (m-1)^2 |y|^4 \right)$$

under suitable conditions on m and k, however we shall not dwell on this.

References

- E. BOMBIERI, E. DE GIORGI, E. GIUSTI, Minimal cones and the Bernstein problem. *Invent. Math* 7 (1969), 243–268.
- [2] A. DAVINI, On calibrations for Lawson's cones. *Rend. Sem. Mat. Univ. Padova* 111 (2004), 55–70.
- [3] G. DE PHILIPPIS, E. PAOLINI, A short proof of the minimality of Simons cone. *Rend. Sem. Mat. Univ. Padova* 121 (2009), 233–241.
- [4] U. DIERKES, G. HUISKEN, The *n*-dimensional analogue of a variational problem of Euler. *Math. Ann.* https://doi.org/10.1007/s00208-023-02726-3.
- [5] L. EULER, Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu accepti. Lausanne et Genevae 1744.
- [6] H. B. LAWSON, The equivariant Plateau problem and interior regularity. *Trans. Am. Math. Soc.* 173 (1972), 231–249.

- [7] U. MASSARI, M. MIRANDA, A remark on minimal cones Bol. Un. Mat. Ital. 6 (1983), 123–125.
- [8] M. MIRANDA, *Superficie minime e il problema di Plateau*. Quaderni di Matematica, Dipart. di Mat., Univ. de Lecce (2006).
- [9] F. MORGAN, The cone over the Clifford torus in \mathbb{R}^4 is Φ -minimizing. *Math. Ann.* **289** (1991), 341–354.