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Minimal Cones and a Problem of Euler

ULRICH DIERKES (*)

ABsTRACT — The minimal cones C = {(x,y) € R™ x R™; |x| < |y|} are shown to minimize the
weighted perimeter P, (E) = f |x|¥|D¢E|,@ € R, E Cc R™ X R™, whenever m + a > 4. This
completes and improves recent results of Dierkes and Huisken [4].
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Introduction

Here we consider the n-dimensional analogue of a problem already investigated by
Leonhard Euler [5], namely the variational integral

Eu(M) = / X|®dH, aeR,
M

where M c R”" denotes some smooth hypersurface and Hj, stands for the k-dimensional
Hausdorff measure. M is called “stationary with respectto &, or simply “a-stationary”,
if the first variation &, (M, X) vanishes, and a stationary surface M is called “a-stable”
if the second variation 6&, (M, X) is nonnegative for suitable variations X of M.
Standard computations show that M is a-stationary, iff the mean curvature H(x) and
the unit normal v = v(x) of M atx € M respectively satisfy

H(x) = alx|*(x,v), x #0,

(*) Indirizzo dell’A.: Faculty of Mathematics, University of Duisburg-Essen,
Thea-Leymann-Str. 9, 45127 Essen, Germany; ulrich.dierkes @uni-due.de


mailto:ulrich.dierkes@uni-due.de

2 U. Dierkes

while in addition M is also a-stable, if for all ¢ € C!(M,R) we have
2
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M a M

where |A| denotes the length of the second fundamental form A of M, cp. Proposition
1.1 and 1.4 in [4].

In particular, if C = closure M is a cone in R"” with only singularity at zero and if
M :=C — {0} is a-stationary, then C is called a-stable, if (0.1) holds forall ¢ € C} (M, R).
Obviously, every area-minimal cone C in R” (i.e. H = 0on C — {0}) such that 0 € C
and C — {0} is a regular hypersurface is a-stationary and we have the following stability
result

THEOREM. ([4]) Let @ > 3 — n and suppose C C R" is an a-stationary cone with
vertex at the origin and such that (n — 3 + )* > 4|x|*|A|*> — 4a. Then C is also a-stable.

(Note that the dimension of the cone C here is (n — 1) rather than » in the paper
[4].)
In particular the cone over the Clifford torus S x §' ¢ R? x R? is stable for all @ > 1.
(Here n = 4 and |A|*> = 2|x|~2). Furthermore the 7-dimensional cones over products of
spheres S x 85 8% x $* and S x S3 are all @-stable, whenever a > \/R — 7, cp. the
list in Corollary 2.2 of [4].
Moreover it could be shown in Theorem 3.1 of [4] that all cones

2

2
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Cn = {(x1,. ., Xom) ER"XR™xT+. .. +x2, < x

minimize the integral &, in a suitable sense, if | < @ < 2(m — 1). So in particular the
cone over the Clifford torus S! x S! minimizes E,, if 1 < @ < 2.

The proof of these results uses a Weierstra3-Schwarz foliation type of argument, as
it was introduced in the celebrated paper by Bombieri, De Giorgi and Giusti [1]. In
fact, under the prescribed conditions on @ and m the cones can be embedded in a “field”
or “calibration” consisting of @-stationary surfaces. On the other hand, it is known
since long, that a much easier device, known as “sub-calibration” is applicable in the
case of classical area-minimal cones and we refer to the papers of Lawson [6], Miranda
[8], Massari-Miranda [7], Morgan [9], Davini [2] and in particular to De Philippis and
Paolini [3] for more pertinent information.

We show here, that many of the a-stable cones can be “sub-calibrated” with respect to
the functional &, and are hence also minimizers for &, in a very general sense. The
simplified proof which will be presented here, follows the approach by De Philippis
and Paolini [3] and hence we may omit some of the details, referring to their paper [3].
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1. @-Subminimal Sets and Minimal Cones

Let E ¢ R" be ameasurable and Q C R” be an open set. We define the “a-perimeter”
of E in Q as

P.(E.Q) = sup{/div{|x|“g}dx; g € CHQ,R") with |g(x)| < 1}.
E

Note that P, (E, Q) is well defined (and possibly infinite) for all @ € R and measurable
sets E. However we have

PropOSITION 1. Let & +n > 1 and suppose JE is of class C*. Then Po(E,Q) =

ff)EnQ |x|YdH,—1 < oo, for every bounded open set Q C R”".

ReEMaRrk. Clearly, if 0 ¢ 0F and Q is bounded, then /aE o X9 dH,—y is always
finite, independet of the value of a € R.

Proor. Let g € CL(Q,R"),|g(x)| < 1 be arbitrary, then
div(|x|?g) = alx|¥ 72 (x - g) + |x|%divg

which is a function of Lebesgue-class L;(€2), if @ + n > 1. Denoting by ¢ the charac-
teristic function of E, we obtain for arbitrary £ > 0 and ball B, = B.(0) c R" with
center zero,

/div(lxl"g)dxz/t,oEdiv(lxl"g)dx:
E Q

/ <pEdiV(|x|ag)dx+/ pdiv(|x|?g)dx =
Q-B. :

&

[ e matts [ (e vadto s [ pedivi®g)a,
OE-B, OB.NE -

where v and v stand for the exterior - or interior unit normals of JE and 9B . respect-
ively. By assumption @ + n > 1, thus the last two integrals tend to zero, as € \ 0,
whence

P(,(E,Q)S/ |x|“dH,—1.
OE

On the other hand, since by assumption v is of class C' on the boundary dE, we may
extend v = v(x) to some function N € C'(R”,R") such that [N (x)| < 1 for all x € R”.
Take some function € C1(Q, R) with [(x)| < 1 for all x € Q and put
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g =nN € CL(Q,R"), then we have for every & > 0 the relation

/div(|x|"g )dx = / eediv(|x|¥g)dx =
E Q

/ ¢Ediv(|x|”g)dx+/ pdiv(|x|¥g)dx =

-Bg &

/ (x| ndH,_ + / 0N - ve)dHor + / odiv(x]*g)dx.
OE-B. OB.NE

£

By virtue of @ + n > 1 and upon letting € Y\, 0 we find
Ry
E OE

Po(E,Q) > / x| Y dH,,_ 1.
OE

whence also

To see the finiteness of both integrals we assume w.l.o.g. that - locally near zero - 0E
is described by some C2-function x,, = ¢(x1, . ..,x,_1) and that @ < 0. Then we have

/ x| ¥ dH,,_ 5/ (x%+...+xi_l)a/2\/1+|D¢/|2dx1...dxn_l <
OENBR(0) Br(0)

R
< const/ 2 qr < oo, since a +n > 1.
0

DEerINITION 1. A measurable set E C R" is a “local minimum for Po( - )” in
Q c R", or simply “a-minimal in Q”, if for all open, boundet sets A C Q

Po(E,A) < Py(F,A)

for every measurable set F, such that the symmetric difference EAF CC A (i.e. the

closure EAF C A).
E is called “a-subminimal in Q”, if for all bounded open A C Q we have

Po(E,A) < Po(F,A)
for every measurable set F C E, such that E \ F CC A.

TueoREM 1. The cones Cp, = {(x, y) e R X R™; |x| < |y|} are a-minimal in R",

n =2m, provided m + a > 4.
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Remark. Combining Theorem 3.1 of [4] and Theorem 1 we conclude that the
cone
Cr = {(x,y) e R* xR* x| < |y|}

has least a-perimeter P, in R* for all @ > 1, in other words, the cone over the Clifford
torus S!' x §' in R* minimizes &,, for any a > 1. Conversely, there are no non-trivial
stable cones in R* with vertex at zero for every @ < 1, according to Theorem 2.3 in [4].

For the proof of the Theorem we present three Propositions, which follow immedi-
ately from [3].

ProposiTION 2. Let a +n > 1 and suppose E C R™ and its complement E€ :=Q\ E
are both a-subminimal in Q, then E is a-minimal in Q.

Proor. We first claim that, since a + n > 1, it follows that P, (E, Q) = P, (E°,Q).
Indeed, arguing as in Proposition 1 and because of div(|x|" g) € Li(Q) forany g €
CLQ,R™),|g(x)| < 1,a+n > 1, we obtain that

/ div(|x|*g)dx = 0.
Q

Therefore
/anEdiv(lx|“g)dx = /Q(cpE — 1)div(|x|“g)dx = —/ngEcdiv(lx|“g)dx,

where @ stands for the characteristic function of the complement E€ = Q \ E. Hence
we have equality P, (E, Q) = P,(E€, Q) and the proof can be completed as in Propos-
ition 1.2 of the paper [3]. |

ProrosiTiON 3. Let @ +n > 1 and suppose Ex C E, k € N, are measurable, a-
subminimal sets in Q C R" for all k € N. In addition assume that Ey, — E in L1 1oc(£2)
as k — oo, then also E is a-subminimal in Q.

Proor. We only show the lower-semicontinuity of the a-perimeter, since the rest
of the proof follows as in Proposition 1.3 of [3] To this end suppose ¢g, — ¢g in
L110c(€2).

For g € CL(Q,R"),|g(x)| < 1and @ +n > 1 we first have div(|x|?g) € L;(Q) and

/(goEk—QDE)div(lxl“g)dx:/ diV(|x|"g)dx—/
Q Ei-E E-

div(|x|*g)dx — 0,

Ey
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as k — oo. Whence

/¢Ediv(|x|“g)dx= lim/goEkdiv(|x|“g)de
Q k= Jo

< liminf P, (Eg, Q),

k—o00

and the semicontinuity of P, follows. Now we can argue as in Proposition 1.3 of [3]
We skip over the details. |

DEeFINITION 2. Let Q C R™ — {0} be open and E C Q be measurable with boundary
OE of class C?. A vectorfield ¢ € C! (Q.R") is an “a-subcalibration” of E (or OE) in
Q, if we have

i) For all x € OE, &(x) = v(x)= exterior unit normal of OE at x.
i) div(|x|*¢é(x)) < 0forallx € ENQ.
iii) |£(x)| < 1 forall x € Q.

PropOSITION 4. Suppose E C Q has boundary of class C* and admits an a-
subcalibration in Q C R" — {0}. Then E is a-subminimal in Q, i.e. Po(E, A) <
Po(F, A) for every bounded, open set A C Q and all measurable F C E with E\ F CC
A.

Proor. Analogous to Theorem 1.5 in [3] with perimeter replaced by a-perimeter.
n

We now turn to the

Proor oF THEOREM 1. The idea is to approximate the cone C,, with a sequence
of smooth sets Ej which admit a-subcalibrations. By Propositions 4 and 3 it follows
that E itself is a-subminimal. Again the same reasoning applies to the complement
C¢, =R" - C,, and hence the cone C,, is @-minimal by Proposition 2.

To this end consider the function f : R XR"™ — R, (x,y) — f(x,y) = M,
x,y € R™. Obviously

Cn = {(x,y) eR™XR™;, f(x,y) < O}
and for every k € N we put
Er = {(x,y) e R" xXR™; f(x,y) < ~1/k}

and
Fr = {(x,y) e R" xXR"™; f(x,y) < 1/k}.
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Clearly, we have for all k € N
Er,cC, CcFy and

Ex — Cy, F = Cpybothin Ly 1o (R") as k — oo and the complement Fy =R" \ F. C
Cyand Fy = R" = Cy = Cpin Ly joc(R") as k — oo,

Additionally, all boundaries in 0Ey, 0 F), are smooth hypersurfaces in R" and are all
a-subminimal in R". Indeed, we claim that the vectorfield

L Dfxy)
“Df )l

defines an a-subcalibration for both Ey and F} in R — {0} respectively, i.e. we have
1), ii) and iii) of Definition 2 for all Ey and F{, k € N.
While i) and iii) are obviously fulfilled in both cases, ii) needs a simple calculation:

E(x,y) =

_ Ixt-ly :
If f(x,y) = == we find successively

fe=xlPx fy = =IyPy, DS = x|+ yl°
Frax; = 250 + 841, fy, = =290y — 8451y 1%,
fxiyj =0

for all indices i, j = 1,...,m. Also, for (x,y) # (0,0) we have |(x, y)|* = (|x|* +

Y22 DI I = ol )72 y), ok = w
xX|°+|y
Df _ 4 1.4 _ 4 2112 _ 4
1D fPdiv( %) = (et = ) {Om = DIal? = Gm+ PP + (m = DI},
whence

o DS
IDfPdiv] 1o )1 1 5| =
alDf2]Ge )| "2 [l = 1] + (6 + 1y12) 7>
{(x* =11 [m = DIxI* = m+ 2 Ply P + (m = DIyI*]} =
| e 12 [l = Iy (el° + 11°)
+ 1 (Il = Iy [m = DIxl* = (m +2) Py + (m = DIyl*] =
e T2 (I = Iy {0n = T+ @) xl® = 3]x |y 2 = 3Pyl + om = 1+ ) [y}
Upon puttlng t: :2 we see that the sign of d1V[|(x »|* ‘D}C‘] is the same as of
f(x,y) = bl prov1ded the polynomial

Pma®)=(m—-1+a) =3t> =3t+(m—-1+a)
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is nonnegative for all r > 0. Since for every ¢ > 0 we have 37> — 3r> — 3t + 3 > 0 (with
zero minimum for ¢ > 0 at 7 = 1) it also follows that p,, o(¢) > 0 for all # > 0, if we
assume that (m — 1 + @) > 3.

Concluding we have shown that the vectorfield &(x, y) = % defines an a-
subcalibration for the sets £ in R" — {0}, k € N, while —£(x, y) furnishes an -
subcalibration for the sets F;_ = R" — F¢ in R" — {0}. Proposition 4 yields the -
subminimality of the sets Ex and F in R" — {0} respectively. However, 0 ¢ Ej or
Fy and we have P (Ex, A) = Po(Ex, A = {0}) < Po(F, A~ {0}) < Po(F, A) for
every bounded open set A C R” and arbitrary F' C Ey with E; \ F CcC A, which shows
that all sets Ej are also a-subminimal in all of R” (rather that just in R — {0}). A
similar argument implies the @-subminimality of F}’ in R" and since Ex — Cy, or
Fy = R" = Cy bothin Ly joc(R") as k — oo, we infer from Proposition 3 that Cy, as
well as its complement Cy, = R" — C,,, are both @-subminimal in R”. An application
of Proposition 2 concludes the proof of the Theorem 1. [

Remark. Using the same type of argument as in the proof of Theorem 3.1 one
can also deal with the minimal cones

Cok = {(x.y) € R" xR (k= Dlx” < (m = DIy}
A subcalibration might then be determined by the normalized gradient of the function
1
fRMXRES R, f(x,y) = 2 (k= Dl = om = 121yl

under suitable conditions on m and k, however we shall not dwell on this.
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