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Abstract

Magnetic skyrmions are vortex-like spin textures in ferromagnetic materials that have
seen a surge in research interest in recent years. Their small size, energetic stability,
and the low applied electric currents required for their manipulation have made them
promising candidates in next-generation information storage and processing applications.
Skyrmions are a subset of a broader class of topological magnetic textures which includes
domain walls and more novel structures such as magnetic hopfions. Magnetic hopfions
are three-dimensional, smoke ring-like topological magnetic structures which are exper-
iencing a steady growth in research interest at the time of preparing this Thesis.

In this Thesis, we investigate the creation and dynamics of magnetic solitons, with a
particular focus on magnetic skyrmions, subject to various external influences. The
Thesis is divided into three parts.

In the first Part, we review relevant concepts, methods, and literature. Specifically, we
introduce magnetic skyrmions and hopfions through topological considerations, as well
as the mechanisms through which they are stabilised. We also discuss the micromag-
netic model, which is the framework within which we perform both the analytical and
numerical calculations.

In the second Part of this Thesis, we investigate the current-driven creation of skyrmions
and vortex rings in chiral magnets. As electrons pass through a magnetic material, their
spin aligns with the local magnetisation, which induces a torque that acts on the magnet-
isation. This torque is known as the spin-transfer torque and causes the magnetisation
to vary over time. The interplay between spin-transfer torque and magnetic impurities
can result in the creation of magnetic textures at the impurity. Following from earlier
literature, we propose a method whereby skyrmions can be created in spin spiral states.
Furthermore, we demonstrate a similar mechanism through which vortex rings can be
created in bulk magnetic systems.

In the final Part of this Thesis, we study the dynamics of skyrmions in both chiral
and frustrated magnets. In the former case, we show that subjecting skyrmions to an
oscillating magnetic field at unit fractions of their eigenfrequencies can result in efficient
excitation of the eigenmodes. This has applications in the frequency multiplication of
magnons. In the latter case, we show that the application of an applied electric field can
excite internal modes of the skyrmion, which we describe using the topology of magnetic
hopfions.
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Kurzzusammenfassung

Magnetische Skyrmionen sind wirbelartige Spintexturen in ferromagnetischen Materia-
lien, die in den letzten Jahren ein starkes Forschungsinteresse erfahren haben. Ihre ge-
ringe Größe, energetische Stabilität sowie die für ihre Manipulation benötigten geringen
angelegten elektrischen Ströme haben Skyrmionen zu vielversprechenden Kandidaten
für künftige Anwendungen in der Informationsspeicherung und -verarbeitung gemacht.
Skyrmionen sind eine Untergruppe einer breiteren Klasse topologischer magnetischer
Texturen, zu denen Domänenwände und neuere Strukturen wie magnetische Hopfionen
gehören. Magnetische Hopfionen sind dreidimensionale, rauchringförmige, topologische
magnetische Texturen, die zum Zeitpunkt der Erstellung dieser Dissertation ein stetig
wachsendes Forschungsinteresse erfahren.

Diese Dissertation untersucht die Erzeugung und Dynamik von magnetischen Solitonen,
wobei ein Schwerpunkt auf magnetischen Skyrmionen liegt, die verschiedenen äußeren
Einflüssen ausgesetzt sind. Die Dissertation gliedert sich in drei Teile.

Im ersten Teil der Dissertation wird ein Überblick über die Konzepte, Methoden und
Literatur gegeben. Insbesondere stellen wir magnetische Skyrmionen und Hopfionen
durch topologische Betrachtungen vor, sowie die Mechanismen, durch die sie stabilisiert
werden. Wir besprechen auch das mikromagnetische Modell, in dessen Rahmen wir
sowohl die analytischen als auch die numerischen Berechnungen durchführen.

Im zweiten Teil dieser Dissertation untersuchen wir die strominduzierte Erzeugung von
Skyrmionen und Wirbelringen in chiralen Magneten. Wenn Elektronen ein magnetisches
Material durchfließen, richtet sich ihr Spin an der lokalen Magnetisierung aus, was ein
Drehmoment induziert, das auf die Magnetisierung wirkt. Dieses Drehmoment wird als
Spin-Transfer-Drehmoment bezeichnet und bewirkt, dass sich die Magnetisierung mit der
Zeit verändert. Das Zusammenspiel von Spin-Transfer-Drehmoment und magnetischen
Inhomogenitäten kann dazu führen, dass an der Inhomogenität magnetische Texturen
erzeugt werden. In Anlehnung an die Literatur schlagen wir eine Methode vor, mit der
Skyrmionen in Spin-Spiral-Zuständen erzeugt werden können. Darüber hinaus demon-
strieren wir einen ähnlichen Mechanismus, durch den Wirbelringe in dreidimensionalen
magnetischen Systemen erzeugt werden können.

Im letzten Teil dieser Dissertation untersuchen wir die Dynamik von Skyrmionen in
chiralen und frustrierten Magneten. Im ersten Fall zeigen wir, dass Skyrmionen, die
einem oszillierendem Magnetfeld, dessen Frequenz ein Bruchteil der Eigenfrequenz ist,
ausgesetzt sind, effizient zu einer Eigenmode angeregt werden können. Dies findet An-
wendungen bei der Frequenzmultiplikation von Magnonen. Im zweiten Fall zeigen wir,
dass das Anlegen eines oszillierendes Feldes Resonanzmoden von Skyrmionen anregen
kann, die wir mit Hilfe der Topologie der magnetischen Hopfionen beschreiben.
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V. Anhänge gemäß Prüfungsordnung 165

List of Publications 167

Curriculum Vitae 169

viii



Part I.

Preliminaries
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Chapter 1
Introduction

In the 19th century, inspired by the work of Helmholtz on Wirbelbewegung, or vortex
motion, in fluids [1], Lord Kelvin proposed his vortex theory of atoms [2]. In this theory,
he considered atoms as localised, knotted structures in the ‘aether’, a material that
was previously hypothesised to permeate space to explain, for example, the propagation
of light. The impossibility of continuously deforming one type of knot into another
would explain the distinct elements, while resonances in these structures would explain
the atomic spectra. Although this theory ultimately proved unsuccessful and was later
abandoned with the discovery of the electron and the subsequent advent of quantum
mechanics in the early 20th century, the idea of localised structures in continuous fields
remains important to this day.

One example of a system that can be described as a continuous field is the magnetisation
in a ferromagnetic material. Below the Curie temperature, the overall magnetisation of a
lattice unit cell in a ferromagnet, which is the sum of the individual magnetic moments
of the magnetically active atoms, tends to align with that of the neighbouring cell.
Thus, zooming out from this microscopic picture with individual spins, one can consider
the magnetisation M as a vector field of constant magnitude Ms, that is a function of
position r. Although the concept of an aether in which knots correspond to chemical
elements has long since been abandoned, the ideas of Kelvin still very much apply in
magnetism, where continuous field theory can be applied.

Depending on the interactions at play in a particular magnetic system, various structures
of the magnetisation field M(r) can be stabilised. Structures which have received
significant research attention in recent decades are topological solitons, which cannot
be created or destroyed by a continuous deformation of M(r) without being moved to
the boundary. This gives the object robustness against perturbations. One example of
such a structure is a domain wall separating regions of different uniform magnetisations.
Another example of topological solitons arising in magnetic materials is a magnetic
skyrmion, which is a localised region in the magnetisation field for which the magnetisa-
tion at the core points in the opposite direction to the background magnetisation. The
uniform variation between the core and the background creates a vortex-like shape. A
further example proposed in bulk magnetic systems is a magnetic hopfion. Magnetic
hopfions are knotted structures somewhat akin to vortex rings in fluids.

In this Thesis, we investigate the behaviour of magnetic textures subject to various
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Chapter 1. Introduction

external factors: applied current and dynamic electric and magnetic fields, within the
micromagnetic model, with emphasis on magnetic skyrmions. The applied currents and
fields induce a range of dynamical behaviours. Under this umbrella, the Thesis is divided
into three parts.

Part I contains a discussion of the core concepts underlying the various investigations. In
Chapter 2 we introduce topological magnetic structures, specifically skyrmions, followed
by a discussion of magnetic hopfions and recent progress into the study of these objects
in Chapter 3. In Chapter 4 we introduce the micromagnetic framework used throughout
the Thesis to model magnetisation textures. The methods discussed are supported by
the discussion of Chapter 5, in which we discuss the stabilisation of skyrmions in various
magnetic systems.

Part II is concerned with the creation of magnetic textures through the application of
electric current to magnetic systems containing impurities. In Chapter 6 we discuss the
current-driven creation of domain walls and skyrmions in the ferromagnetic state, before
discussing the creation of skyrmions in spin spiral states in Chapter 7. In Chapter 8
we consider analogous processes in bulk systems, resulting in the creation of magnetic
vortex rings.

In Part III, we study the dynamics of skyrmions in a variety of contexts. In Chapter 9
after providing a general introduction to the motion of skyrmions when subjected to
spin-transfer torque, we investigate this phenomenon for the case of skyrmions in a
cycloidal background. In Chapter 10 we discuss the resonance modes of skyrmions in
chiral magnets, and their application to frequency multiplication of magnons. We argue
that the results of this investigation apply to general topological magnetic structures.
In Chapter 11 we turn to the internal dynamics of skyrmions in frustrated magnets,
investigating rotations of their in-plane magnetisation direction induced by an applied
oscillating electric field. We end Chapter 11 with an interpretation of the resulting
dynamics as hopfions in spacetime. A summary of the studies presented in this Thesis
is given in Chapter 12. The Appendices contain background information pertinent to
the results reported, such as derivations and code.

4



Chapter 2
Topological Magnetic Textures: From
Domain Walls to Skyrmions

Topology is a branch of mathematics which deals with properties that do not change
under continuous deformations. A commonly used example to illustrate this concept
is the morphing of a coffee mug into a doughnut, illustrated in Fig 2.1. Because both
a coffee mug and a doughnut each have one hole, a one-to-one mapping between each
point on the mug and on the doughnut is possible. Removing the hole, on the other
hand, would require a mapping from many points to one (‘pinching the hole shut’). As
we will see in this Chapter, similar notions can be applied to the field configurations
of the magnetisation field in magnetic materials, in which localised field configurations,
known as topological solitons, exist that cannot be continuously deformed into states
with different topologies.

2.1. Homotopy Groups and Magnetic Textures

One of the simplest topological objects in a ferromagnet is a one-dimensional domain
wall: a boundary between two magnetic domains with different orientations of the
normalised magnetisation m(r) = M(r)/Ms [3]. Let us consider a domain wall along
the x-axis for which m(x → −∞) = −ẑ and m(x → ∞) = ẑ, where the magnetisation
is restricted to rotate in the xz-plane. One example of a profile which satisfies these
boundary conditions is

m = sin[Θ(x)]x̂+ cos[Θ(x)]ẑ, (2.1)

Figure 2.1.: Deformation of a mug into a doughnut. As each object has one hole, there
is a one-to-one mapping between each point on the doughnut and the mug.
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Chapter 2. Topological Magnetic Textures: From Domain Walls to Skyrmions

x

Θ(x)

π

2π

Figure 2.2.: Domain wall profile with a rotation of π, shown in red, and 2π, shown in
blue.

where Θ(x) = π[1 − tanh(x/λ)]/2, with λ representing the domain wall width. This is
plotted as a red curve in Fig. 2.2. The number of times that the spin rotates is given by

w =
1

2π

∫ ∞

−∞
dx ∂xΘ(x), (2.2)

which, in this case, is

w =
1

2π
[Θ(x→ ∞)−Θ(x→ −∞)] =

1

2
. (2.3)

This number not being an integer reflects the fact that m(x → −∞) ̸= m(x → ∞).
Thus, the endpoints cannot be ‘glued together’, or identified. This can be remedied
by requiring that the magnetisation performs a full 2π rotation (or, more generally, an
integer number of 2π rotations), such as Θ(x) = π[1− tanh(x/λ)], shown as a blue curve
in Fig. 2.2. In this case, m(x→ −∞) = m(x→ ∞) = ẑ, and it is possible to identify the
endpoints infinitely far away from the domain wall in both directions along the x-axis.

The idea of making infinity a single point to create a compact manifold is known as
compactification and, in this case, the x-axis has been compactified to a (unit) circle S1.
Explicitly, a mapping between these two spaces is given by the stereographic projection,
which is illustrated in Fig. 2.3. One possible mapping of this compactification is given
by, for a point (x, z) on S1 and a point X along the x-axis,

X =
x

1− z
. (2.4)

As both x and m(x) take values on S1, the S1-winding number wS1 is a topological
invariant of the mapping from one unit circle to another. In general, homotopy groups
πn(X) characterise mappings between an n-sphere and a topological space X [3]. This
notion of the S1 → S1 mapping being characterised by an integer is formalised in
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2.1. Homotopy Groups and Magnetic Textures

Figure 2.3.: Illustration of the one-dimensional stereographic projection from S1 to R.
Note that in (2.4), (2.7), and (3.1), the plane goes through the equator of
the n-sphere, rather than the sphere being tangent to the plane, which is
another convention that is used here for illustrative purposes.

wS1 = 0 wS1 = 0 wS1 = 1 wS1 = −1 wS1 = 2

Figure 2.4.: Illustration of various S1 winding numbers.

homotopy theory, with the expression

π1(S
1) = Z, (2.5)

where the subscript 1 indicates that the base space is a 1-sphere, or unit circle. Examples
of such a mapping with various winding numbers are illustrated in Fig. 2.4. Although
the textures with a given winding number can be smoothly deformed into one another, a
smooth deformation between mappings of different winding numbers is, for a continuous
vector field, mathematically forbidden. This introduces the idea of topological protec-
tion: the example of a domain wall with wS1 = 1 cannot be smoothly deformed into the
topologically trivial state where m(x) = ẑ everywhere, and thus the domain wall is said
to be topologically protected.

It is important to note, however, that topology alone does not guarantee the stability
of localised structures. To see this, we invoke the argument of Derrick and Hobart [4,
5]. Considering the energy of this one-dimensional system being given by, for the profile
(2.1)1,

U [m(x)] =

∫
dx (∂xm)2 =

∫
dx (∂xΘ)2 ∝ 1

λ
, (2.6)

the energy is minimised when the domain wall characteristic width λ becomes infinitely
large, such that the object ceases to be local. To fix a finite length scale, terms must
be added to the energy functional that have different scaling with length. For example,
while (∂xΘ)2 scales as length−2, a quartic term (∂2xΘ)2 would scale as length−4.

Moving up to two dimensions, we can consider folding a domain wall around in a circle,
to create a vortex-like structure, such that m(r = 0) = −ẑ and m(|r| → ∞) = ẑ, as
illustrated in Fig 2.5. This structure is known as a magnetic skyrmion. In addition to

1Throughout this Thesis, we use the non-standard notation U for the energy. E is often used in the
literature, but we do not use this to avoid confusion with the electric field in later chapters.
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Chapter 2. Topological Magnetic Textures: From Domain Walls to Skyrmions

moving the base space up a dimension to R2, we have also relaxed the restriction that
m(r) takes values on a unit circle, instead taking values on a 2-sphere S2. Just as we
considered identifying ±∞ of the x-axis, we now consider identifying all points |r| → ∞,
such that the R2 plane of infinite extent in x and y is compactified onto a unit 2-sphere,
as illustrated in Fig. 2.6. The stereographic projection in this case is analogous to (2.4).
Namely, for points (x, y, z) on a 2-sphere and points (X,Y ) in R2,

X =
x

1− z
, Y =

y

1− z
. (2.7)

The north pole of the 2-sphere is mapped to the points infinitely far away fromX = Y = 0
in R2. Thus, the magnetisation m(r) now represents a mapping S2 → S2. As with
S1 → S1, the mapping S2 → S2 can be described in homotopy theory by an integer:
π2(S

2) = Z. This is also a winding number, counting the number of times that the
magnetisation target space wraps the unit sphere base space. This topological invariant,
known as the skyrmion number Nsk, is given by

Nsk =
1

4π

∫
R2

d2rm · (∂xm× ∂ym), (2.8)

where the integral evaluates the solid angle subtended by the magnetisation texture over
the unit sphere. A skyrmion texture is typically written as

m =

cosΦ sinΘ
sinΦ sinΘ

cosΘ

 , (2.9)

where Φ and Θ are the azimuthal and polar angles respectively. In analytical calculations,
Θ(ρ) is typically a function that decreases monotonically from π at the centre of the
texture to 0 as the radial coordinate ρ → ∞. Φ(ψ) is a function that varies with the
polar angle ψ from the x-axis in the xy-plane as

Φ(ψ) = mψ + η, (2.10)

where m = −Nsk is the vorticity and η is the helicity. Conventionally, textures with
m = 1, or Nsk = −1, are known as skyrmions and those with Nsk = 1 are antiskyrmions2.
For skyrmions, η = 0, π corresponds to a Néel-type skyrmion and η = π/2, 3π/2
corresponds to a Bloch-type skyrmion, shown in Figs. 2.6(a) and (b) respectively, as their
radial profiles correspond to Néel and Bloch domain walls. For an antiskyrmion, varying
η only rotates the texture about ρ = 0. Which type of skyrmion is stabilised depends
on the microscopic interactions in the system, which is discussed further in Chapter 5.
As with the one-dimensional case, magnetisation textures of different Nsk cannot be
continuously deformed into one another. As shown in Fig. 2.6(c), a texture for which
the integration in (2.8) yields a non-integer value cannot strictly be assigned a topological
charge as there is no unique value of m(r) for |r| → ∞; instead, the magnetisation takes
all values on the equator of S2 infinitely far from the origin, depending on the polar
angle.

2In (2.8), a skyrmion with vorticity m = 1 and polarity p = −1 (meaning that the magnetisation at the
core points along −ẑ) has Nsk = −1. The expression for Nsk given in (2.8) often has an additional
minus sign so that Nsk has the same sign as m
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2.2. Prediction and Observation of Magnetic Skyrmions

Figure 2.5.: Illustration of the closing of a domain wall on itself to construct a skyrmion.

2.2. Prediction and Observation of Magnetic Skyrmions

In this Thesis, we consider skyrmions as localised, topologically protected quasiparticles
with the homotopy group π2(S

2) in quasi-two-dimensional ferromagnetic materials. How-
ever, the concept of the skyrmion was proposed by Skyrme in the mid-20th century as
a model for nucleons [6–10], in the same vein as Kelvin’s model of atoms described
in Chapter 1. In this context, skyrmions are topological solitons in a pion field in
three spatial dimensions. As this model considers an SU(2) field (which is topologically
equivalent to S3) in three spatial dimensions (which can be compactified to S3), the
homotopy group of the system considered by Skyrme is π3(S

3). Due to the difference in
homotopy classification between the objects that Skyrme envisaged and those typically
studied in magnetic materials, the latter are sometimes referred to as ‘baby skyrmions’.
Since Skyrme’s pioneering theoretical work, skyrmions have appeared in various fields
of physics, including in the study of Bose-Einstein condensates [11, 12], superconduct-
ors [13], liquid crystals [14, 15], as well as in magnetic materials.

Magnetic skyrmions (generally referred to as simply ‘skyrmions’ in the magnetism com-
munity) have seen a significant increase in research efforts in recent years. In a series
of papers, Bogdanov theoretically investigated ‘magnetic vortices’, which would later be
called magnetic skyrmions, in materials with the Dzyaloshinskii-Moriya interaction [16–
21] discussed in Section 4.1. This texture turned out to be that of the unexplained
‘A-phase’ [22, 23] in the magnetic phase diagram of the chiral magnet MnSi, observed
using magnetoresistance and small-angle neutron scattering (SANS). This phase diagram
was observed for magnetic fields magnitudes at the order of 0.1T applied perpendicular
to the plane of the thin film sample at temperatures below, but close to, the Curie
temperature. It will be discussed in more detail in Section 5.1. The experimental
confirmation linking the A-phase to a skyrmion lattice came in 2009 when Mühlbauer et
al. [24] accidentally measured the neutron diffraction pattern with the applied magnetic
field perpendicular to, rather than parallel to, the neutron beam, resulting in a six-fold
diffraction pattern: an experimental signature of a skyrmion lattice [25]. By a stroke
of luck, the measurements happened to have been taken at the correct temperature
and magnetic field amplitude for the skyrmion lattice to be the ground state of the
system, and these measurements helped to kick-start the study of skyrmions, known as
skyrmionics. Furthermore, in 2010, real-space observations of skyrmions in MnSi and
Fe1–xCoxSi were made using Lorentz transmission electron microscopy [26]. Throughout
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Chapter 2. Topological Magnetic Textures: From Domain Walls to Skyrmions

a) b)

c) d)

Figure 2.6.: Illustration of the stereographic projection of a vector field over S2 onto R2.
(a) and (b) Construction by stereographic projection of a Néel- and Bloch-
type skyrmion (Nsk = −1) respectively. (c) Construction of an antiskyrmion
with Nsk = 1. (d) For a meron, only half of the sphere is covered, resulting
in a non-integer skyrmion number (in this case, Nsk = 1/2), such that m is
not defined one-to-one as |r| → ∞.
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2.3. Applications of Magnetic Skyrmions

the 2010s and continuing into the 2020s, there has been an intense research effort into
skyrmions [27, 28].

2.3. Applications of Magnetic Skyrmions

Real-world applications of magnetisation textures such as domains, and potentially
skyrmions, in ferromagnets, include data storage and processing. The concept of mag-
netic racetrack memory was proposed by Parkin, Hayashi and Thomas [29] in 2008
and consists of a thin magnetic material with successive magnetic domains of opposite
polarisation, with the orientation (up or down) representing ‘1’ and ‘0’ binary digits
(bits). Such tracks could be folded up to form a three-dimensional structure, providing
high information densities. This concept has been extended to skyrmions [30–32], and is
illustrated in Fig 2.7. Figure 2.7 shows read and write elements, as well as a track along
which skyrmions can be moved by spin torques. Skyrmion racetrack memory offers
several advantages over magnetic domain-based racetrack memory. Firstly, magnetic
domain walls would necessarily extend to the edges of the system, which may have a
roughness that results in reduced stability and effectiveness of the domain wall motion.
Magnetic skyrmions, on the other hand, can propagate in the racetrack without touching
the sides, allowing for more efficient transport. Secondly, the small size of skyrmions in
comparison with magnetic domains could also allow for high densities of information to
be stored. Their current-driven dynamics also offer advantages over magnetic domains.
For a lattice of skyrmions, the threshold current density required to set them in motion
is very low, of the order of 106Am−2 [33], compared to that for domain walls, around
1010Am−2 to 1012Am−2 [29, 34]. Skyrmions also usually couple only weakly with
pinning centres [35, 36]. The current-driven motion of magnetic skyrmions is discussed
in more detail in Chapter 9. There are various methods by which magnetic skyrmions
can be written, which are discussed in Chapter 6. The data represented by the presence
or absence of skyrmions in the device could be read using magnetoresistive techniques
such as giant magnetoresistance, tunnel magnetoresistance, or through the topological
Hall effect [37]. The manipulation of skyrmions in logic gates has also been considered,
with skyrmion logic gates demonstrated in numerical simulations [38, 39]. Furthermore,
the implementation of transistors using magnetic skyrmions, where the operation is
controlled by an externally applied electric field which locally modifies the uniaxial
anisotropy, has been investigated [40, 41].

Outside of conventional computing, the use of skyrmions in unconventional computing
has been the subject of intense theoretical and experimental investigation in recent
years [42]. One potential application is in stochastic computing, where, instead of
using precise bitwise operations to perform calculations, the problem is represented
in terms of random bitstreams. The values are then encoded as the probability of
observing a ‘0’ or ‘1’ in a random sequence of bits, which can result in a speedup of
the calculation at the cost of precision [43]. Probabilistic computing using skyrmions
has been investigated using magnetic skyrmions both theoretically and experimentally,
where magnetic skyrmions are reshuffled to remove correlations between two bitstreams
which cause inaccurate results [44, 45]. Additionally, applications in neuromorphic
computing, where the computation is inspired by the function of the brain, have been
investigated. In this paradigm, instead of using the von Neumann architecture in which
the processing and memory units are physically separated (leading to the so-called ‘von
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Chapter 2. Topological Magnetic Textures: From Domain Walls to Skyrmions

Figure 2.7.: Illustration of a skyrmion racetrack memory device. The skyrmions are
created at the write element, driven along the nanotrack by a spin-polarised
current, and read at the read element. Figure taken from Ref. [32].

Neumann bottleneck’ where the data transfer between the units is the limiting factor in
speeding up calculations), data is processed in the same place that it is stored, allowing
for low-power, highly parallel computing. It has been suggested theoretically [46, 47]
and demonstrated experimentally [48] that skyrmions can emulate synapses. Another
form of neuromorphic computing is reservoir computing [49], in which the input is
fed into a fixed, highly nonlinear ‘reservoir’, which represents a higher dimensional
computational space. In contrast to backpropagation-based neural network training
algorithms, in reservoir computing, the training only occurs on the output weights. A
complex magnetic texture consisting of many skyrmions has been proposed to act as a
reservoir in this computational paradigm, where, for example, the skyrmions create an
anisotropic electric resistance through the texture [50–54]. Aside from data information
and processing applications, skyrmions have potential applications in nano-oscillators
for microwave signal generation and detection [55–58], as discussed in Chapter 10.
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Chapter 3
Magnetic Hopfions

In the previous Chapter, we discussed topological solitons in magnets, with domain walls
in one dimension and skyrmions in two dimensions. As magnets can also exist as bulk
systems, it is natural that we can conceive of three-dimensional topological solitons in
magnetic materials. Various examples of these exist, such as chiral bobbers, which are
skyrmion tubes (a skyrmion texture extruded along the direction perpendicular to the
plane in which it lies) extending from the edge of the sample and terminating in a Bloch
point (also referred to as a magnetic monopole or hedgehog) at which the magnetisation
vanishes [59]. A related object is a toron, also known as a magnetic globule, monopole-
antimonopole pair, or dipole string. This is similar to a chiral bobber, except that the
ends of the skyrmion tube terminate in oppositely charged Bloch points [60–63]. A
texture that has seen a sharp rise in interest over the years leading up to the preparation
of this Thesis is the magnetic hopfion. This is a localised topological soliton whose
topology is defined in a somewhat analogous manner to domain walls and skyrmions,
but differently in the sense that the base and target spaces of the mapping m(r) have
different dimensionalities. At a conceptual level, a hopfion can be considered as a
texture for which the preimages of the mapping from three-dimensional space to the
unit sphere on which the magnetisation exists, i.e. the closed loops in space at which the
magnetisation m(r) points in a given direction, are linked. This is illustrated in Fig. 3.1,
and discussed in the following Section. In this Chapter, we provide an introduction to
these textures and an overview of recent progress in their study.

3.1. Topology of Magnetic Hopfions

For a normalised magnetisation vector field m(r) in a bulk magnet, the target space is
still the unit sphere S2, but the base space is R3. As before, we can map between three-
dimensional space R3 and the 3-sphere S3 existing in four-dimensional space through
the stereographic projection analogous to (2.4) and (2.7). For points (x, y, z, w) on a
3-sphere x2 + y2 + z2 + w2 = 1 and (X,Y, Z) in R3, we consider the compactification

X =
x

1− w
, Y =

y

1− w
, Z =

z

1− w
, (3.1)

where the set of points infinitely far from the origin corresponds to the point w = 1,
x = y = z = 0 in S3. Thus, m(r) represents the mapping R3 ∪ {∞} ∼= S3 → S2, and
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Chapter 3. Magnetic Hopfions

Figure 3.1.: Magnetic hopfion texture created from a tube of in-plane magnetic skyrmi-
ons, with various preimages around the S2-equator, Θ = π/2, shown.

the relevant homotopy class is π3(S
2). This homotopy class is associated with an integer

topological invariant, i.e. π3(S
2) = Z, which was discovered by Hopf [64] in 1931. Hopf

lends his name to topological solitons of this homotopy class: hopfions. Unlike with
the domain wall and skyrmion, the base space and target space do not have the same
dimension in the Hopf map S3 → S2, and the topological invariant does not have the
interpretation of a winding number. Each point on S2 of the map corresponds to a
great circle S1 of S3, such that the 3-sphere is an S1-bundle over the 2-sphere1. The
topological invariant then has the interpretation of a linking number, quantifying the
number of times the preimages S1 of the mapping link each other. In terms of the
magnetisation vector field m(r), this can be seen by considering all of the points in the
system which align in two distinct directions, forming closed loops (the preimages), and
counting the number of times the closed loops link each other.

An example of hopfion magnetic texture is given by the Hopf map, m(r) = ⟨χ|σ|χ⟩,
where σ = (σx, σy, σz) is the Pauli vector and the spinor |χ⟩ = (x + iy, z + iw) [67].
x, y, z, w are coordinates on S3 in terms of the R3 coordinates X, Y , Z, and can be
calculated using the inverse of (3.1),

x =
2X

1 +R2
, y =

2Y

1 +R2
, z =

2Z

1 +R2
, w =

R2 − 1

R2 + 1
, (3.2)

where R2 = X2+Y 2+Z2. A selection of preimages of this mapping is shown in Fig. 3.2.

1Put informally, a fibre bundle is a structure that looks locally like a product space but is not necessarily
a product space globally. In this context, S3 can be constructed by assigning a unit circle S1 to each
point on S2, so that S3 locally looks like S2×S1, though this is not the case globally. A discussion of
fibre bundles can be found in, for example, Ref. [65], and a discussion on the Hopf bundle specifically
can be found in Ref. [66].
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3.1. Topology of Magnetic Hopfions

Figure 3.2.: Various preimages of the Hopf map generated by projecting the fibres S1

of the inverse Hopf map S2 → S3 into R3. The fibres corresponding to a
selection of points on the unit sphere are shown (matched by their colour).

The topology of a magnetic hopfion with unit topological charge can be considered as
a magnetic skyrmion tube where the skyrmion helicity is rotated through 2π along the
length of the tube, and the ends are joined together. If the helicity is instead rotated
n ∈ Z times, the Hopf index of the texture is n. We note, however, that the boundary
condition that m(r) tends to a constant value as |r| → ∞ must be satisfied, and thus,
an alternative way to consider hopfions in bulk is to consider an in-plane skyrmion tube
(where the helicity is not rotated). This satisfies both the linking of preimages and
m(r) tending to a constant value in all directions away from the localised hopfion, as
illustrated with selected preimages in Fig 3.1. For the case of two interlinked hopfion
textures, as in Fig. 3.3(c), of index H1 and H2 respectively, the total Hopf index is
H = H1 + H2 + 2, where the extra 2 accounts for the linking of the preimages in the
respective hopfion textures with each other [68]. More complicated structures are also
possible, and a cinquefoil knot with H = 8 is also shown in Fig. 3.3(d). In practice,
structures with higher Hopf indices tend to cost more energy and be less stable [69–71].

In 1947, Whitehead [72] showed that the Hopf index can be expressed as the integral

H = − 1

(8π)2

∫
R3

d3rF (r) ·A(r), (3.3)

where Fi(r) = εijkm · (∂jm × ∂km) is the emergent magnetic field and A(r) is the
corresponding vector potential defined through F = ∇ × A. Though this is a deep
theorem and the fact that (3.3) represents the linking number of preimages is not
immediately obvious, it provides a convenient way to determine whether or not a given
magnetic texture is a hopfion without the need to plot and examine the preimages.
We remark that it has the same mathematical and physical interpretation of magnetic
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Chapter 3. Magnetic Hopfions

a) b)

c) d)

Figure 3.3.: Preimages of hopfion textures with various Hopf indices, with (a) a single
twist (H = 1), (b) a double twist (H = 2), (c) interlinked H = 1 tubes
which have H = 4 taken overall, and (d) a cinquefoil knot with H = 8.

helicity [73] for magnetic fields and hydrodynamical helicity [74] for fluid velocity fields,
which measures the twist, linkage, and writhe of the fields2. To evaluate (3.3), A can be
calculated through integrals such as Ax(r) = −

∫ y
−∞ dy′ Fz(r), which can be discretised

to evaluate them numerically3. Python code to numerically integrate (3.3) to calculate
the Hopf index is provided in Appendix A.

3.2. Stabilisation of Magnetic Hopfions

Hopfions in bulk ferromagnetic systems have received a surge of interest starting in
the late 2010s and going into the 2020s, though the attention they receive still lags
significantly behind that of magnetic skyrmions at the time of writing this Thesis. Field-
theoretical consideration of the stabilisation of hopfions, however, has been a subject of
study since the 1970s. Hopfions have also been studied in non-magnetic systems such
as liquid crystals [75–77], colloidal dispersions [78], and ferroelectric nanoparticles [79].
Work by Faddeev in the 1970s considered an extension to Skyrme’s original theory,
including spatial derivatives of various orders such that localised structures can be stabil-
ised as per Derrick and Hobart’s scaling argument discussed in the previous Chapter [80,
81]. This is now known as the Skyrme-Faddeev model [82], in which the lower bound of

the hopfion’s energy scales as |H|3/4 [83, 84].

Finding magnetic systems in which magnetic hopfions can be stabilised is still an area of

2Helicity in this context is not to be confused with skyrmion helicity, which is the in-plane angle of a
skyrmion texture’s spins with respect to the radial direction.

3Alternatively to calculating A(r) explicitly, (3.3) can be calculated in momentum space, as in Ref. [60].
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active research. The stabilisation of hopfions in ferromagnetic systems was first studied
theoretically by Bogolubsky [85] in the 1980s, in which an isotropic energy functional was
considered. Such an energy functional might be realised in a bulk frustrated magnets
with competing exchange interactions under an applied magnetic field, which will be
discussed in more detail generally in Chapter 4, as well as Chapters 5 and 11 for the
case of skyrmions in thin films. The energetics of magnetisation textures in such systems
with Hopf indices of 1, as well as higher Hopf indices, has been studied by Sutcliffe [71].
It has also recently been derived from considerations of the underlying lattice, with
a generalisation to the anisotropic case made, by Rybakov et al. [84]4. The energy
barriers for the collapse of hopfions in this model to the ferromagnetic and toron states
have recently been studied by Sallermann, Jónsson and Blügel [63] using the geodesic
nudged elastic band [86] and dimer [87] methods, which are algorithms to numerically
find saddle points in the energy landscape (and thus paths of minimum energy between
two states) of a system.

A further method by which it has been proposed to stabilise magnetic hopfions is in chiral
magnetic nanocylinders capped at both ends with thin films that have perpendicular
magnetic anisotropy. This was suggested in three independent studies published in 2018
within a few months of each other [60, 88, 89]. Unlike the other methods, however,
the boundaries play a pivotal role in the stabilisation of the hopfion. The dynamic
stabilisation of hopfions has also been considered, which will be discussed in more detail
in Chapter 8.

3.3. Experimental Progress with Magnetic Hopfions

Due to the difficulty in imaging bulk textures, experimental work on magnetic hopfions
is significantly behind theoretical work, though progress is being made. A method
for the reconstruction of preimages from X-ray nanotomography data was proposed
by Donnelly et al. [90]. In their 2021 work, they determined the vortex rings they
imaged to have a Hopf index of zero [91]. In the same year, the observation of hopfions
in Ir/Co/Pt was reported by Kent et al. [92], though the lack of the reconstruction of
the full three-dimensional vector field prevented the claim of hopfions from being made
without ambiguity. Furthermore, the observation of ‘hopfion rings’: coupled states of
hopfions and skyrmion strings, has been recently reported, with a protocol proposed to
nucleate them [93].

Some theoretical works have suggested methods by which magnetic hopfions could be
detected. The emergent magnetic field of a hopfion leads to a local topological Hall sig-
nature, which vanishes on a global level due to the vanishing spatially averaged emergent
magnetic field. It has been proposed by Göbel et al. [94] to use the local topological
Hall signature to detect magnetic hopfions. It was later shown by Pershoguba, Andreoli
and Zang [95] that, despite the vanishing emergent magnetic field, there is a nonzero
topological Hall signal. Further theoretical studies have modelled the propagation of
spin waves through hopfion textures [96, 97], potentially providing a further method
with which to detect them. The resonance modes of hopfions have also been investigated
numerically [98–101], potentially providing a way to detect them using radio frequency

4Although Ref. [84] was published in 2022, it first appeared as a preprint on arXiv in 2019, and as such,
various research works using its results appeared before its 2022 publication.
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Chapter 3. Magnetic Hopfions

magnetic fields.

3.4. Applications of Magnetic Hopfions

While the field of skyrmionics is well-developed, with many envisaged applications of
magnetic skyrmions as discussed in Section 2.3, the field of ‘hopfionics’ is far newer,
and much of the research effort is thus focused on their more fundamental aspects
than potential applications. Nonetheless, as with magnetic domains and skyrmions,
hopfions have potential applications in data information and processing. Their current-
driven motion has been investigated in recent years. Unlike magnetic skyrmions, which
suffer from the so-called skyrmion Hall effect, in which a spin-polarised current induces
current-driven motion with components both parallel and perpendicular to the direction
of the applied current (an effect which is generally seen as undesirable), hopfions do not
show such an effect [67, 102]. Because of this, it has been suggested, as with magnetic
domains and skyrmions, to use magnetic hopfions in racetrack memory devices [94]. The
excitation spectra of magnetic hopfions discussed in the previous Section could have
applications in neuromorphic computing. Specifically, it has been proposed by Zhang et
al. [96] to use magnon scattering by magnetic hopfions in neuromorphic devices, with the
high nonlinearity of the hopfion magnetisation textures making them ideal candidates
for reservoirs in reservoir computing.
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Chapter 4
Statics and Dynamics of Magnets

Our understanding of ferromagnets has increased drastically over the past century.
Around the turn of the 20th century, Weiss attempted to explain the spontaneous
magnetisation of ferromagnetic materials through the existence of a very high ‘molecular
field’ experienced by the magnetic moments within the material [103]. This theory was
incomplete, however, as the ‘molecular field’ relied on the spins being aligned in the
first place, creating a causality dilemma. The underlying physics was later unveiled by
Heisenberg, who was able to explain the spontaneous alignment [104], which is discussed
in the following Section.

The field of micromagnetics originated in the early 20th century. In the 1930s, Bloch
calculated the shape and energy of domain walls considering the exchange interaction
and uniaxial anisotropy [105]. Such techniques were expanded upon in the work of
Landau and Lifshitz when they derived the equation of motion of the magnetic moments
using the variational principle [106], the so-called Landau-Lifshitz equation, discussed
in Section 4.2. In the late 1950s, instead of starting with domain walls and deriving
their properties, Brown generalised the equation derived by Landau and Lifshitz to
a general vector field, suggesting that magnetic domains form naturally upon time
integration of the equation, without the prior assumption of their existence [107–109].
He also suggested that the Landau-Lifshitz equation could be numerically integrated
using computers, though computational power was too limited at the time for this to
be feasible. In the meantime, however, computational power has increased significantly,
making the numerical modelling of ferromagnetic systems much more feasible, with sim-
ulations modelling systems with sizes on the order of microns being feasible on personal
computers. The advent of the acceleration of calculations using graphics processing
units (GPUs) [110, 111] has further aided numerical micromagnetic modelling. GPU
acceleration allows the parallelisation of the time integration of the equations of motion
of magnetisation vector fields, further making such numerical modelling techniques more
attractive.

4.1. Magnetostatics

The micromagnetic model is referred to as a semiclassical model as, although the spins
underlying the magnetisation are fundamentally quantum mechanical, the magnetisation
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Chapter 4. Statics and Dynamics of Magnets

Figure 4.1.: Illustration of how microscopic spins on the underlying lattice are averaged
out in micromagnetic modelling.

is modelled using a classical field theory. Its scale sits somewhere between a microscopic
theory and a macroscopic theory. While individual spins are not resolved (as in, for
example, atomistic simulations), domain structures are accounted for (in contrast to, for
example, the macroscopic Maxwell equations where the domain structures are averaged
out). The microscopic arrangement of the magnetically active ions is ignored, and the
system is described by a continuous vector field M(r, t) = Msm(r, t), where |m| = 1
and Ms is the spontaneous magnetisation. For temperatures θ far below the Curie
temperature θc above which a material ceases to be ferromagnetic, the temperature de-
pendence of the spontaneous magnetisation is approximately given by Bloch’s law [112],
Ms(θ) = Ms(0)[1 − (θ/θc)

3/2]. In the zero-temperature regime, which is the case in
most of the investigations of this Thesis, the spontaneous magnetisation is equal to the
saturation magnetisation, which is the maximum magnetisation that can be achieved
when increasing an externally applied magnetic field. The principle of averaging out the
underlying spins to obtain the semiclassical magnetisation vector field discretised over
a lattice, is illustrated in Fig. 4.1. Furthermore, it is assumed that the temperature
is uniform such that Ms is uniform throughout the system, and well below the Curie
temperature of the material.

With m(r) as an order parameter, an effective energy functional for the system can be
written as a series expansion in the components mi of m, and its spatial derivatives ∂α
as [113–115]

U [m(r)] =

∫
d3r

[
−Bimi −Kijmimj −Kijklmimjmkml −Dα

ijmi∂αmj

+Aαβ
ij ∂αmi∂βmj +Aαβ

ijklmimj∂αmk∂βml +Aαβγδ
ij ∂α∂βmi∂γ∂δmj − . . .

]
. (4.1)

Typically, it is sufficient to consider only a few leading-order terms, as higher-order terms
become negligible on larger length scales. The terms which are included in a given model
depend on the properties of the specific system under study, such as the symmetries of
the underlying lattice. For example, if the lattice is inversion-symmetric, all Dα

ij = 0.
The magnitudes of the tensor components are determined by the microscopic interactions
and can be determined from experimental data or microscopic theories such as density
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4.1. Magnetostatics

functional theory.

An alternative view of (4.1) is as the continuum limit of an atomistic model, in which
interactions between spins on the underlying lattice are considered. Specifically, the
term in (4.1) labelled by B is the Zeeman term, those with A are symmetric exchange
terms, those with K are anisotropy terms, and that with D is the Dzyaloshinskii-Moriya
interaction term. In the following, we explore the various terms seen in frequently studied
magnetic systems.

Symmetric Exchange Interaction

The symmetric exchange interaction is a quantum mechanical effect resulting from the
fact a state in which electron spins are aligned (spin triplet) has a different energy to one
in which the spins are antialigned (spin singlet). It can be modelled using the Heisenberg
model, the derivation of which is discussed in many textbooks on quantum mechanics
and/or magnetism, such as Ref. [116] for an overview, or Ref. [117] for a more in-depth
discussion. In this model, the interaction energy between two spins Si and Sj at lattice
sites i and j respectively is given by JijSi · Sj , where Jij is known as the exchange
constant1. The Heisenberg model is written as

Ĥex = −
∑
i>j

JijSi · Sj , (4.2)

where the sum is taken pairwise over all lattice site i, j, and i > j prevents double-
counting. If it is assumed that the lattice is isotropic such that Jij remains constant for
equivalent lattice sites throughout the structure, the continuum limit of this equation
becomes, to quartic order in the spatial derivatives [118, 119],

Uex[m(r)] =

∫
d3r

[
−I1

2
(∇m)2 +

I2
2
(∇2m)2

]
. (4.3)

Here, (∇m)2 = (∂imj)(∂imj) and (∇2m)2 = (∂α∂αmi)(∂β∂βmi), with Einstein summa-
tion convention applied. A derivation of (4.3) is given in Appendix B. In many skyrmion-
hosting systems, the higher-order term is not relevant due to a lack of frustration, as
discussed in Section 5.4. In this case, the symmetric exchange energy functional takes
the more conventional form

Uex[m(r)] = A

∫
d3r (∇m)2, (4.4)

where A = −I1/2.
In this Thesis, we will use the former notation with I1 and I2 when we deal with frustrated
magnets with competing exchange interactions, and the latter with A when we deal with
chiral magnets for which only the quadratic-order exchange term is relevant, in order
to be as close to literature conventions as possible. The conditions for the higher-order
exchange term to be relevant to the energetics of the system are discussed in Section 5.4.
In (4.4), the theory is only well-defined if A > 0, which is the case for all studies in this
Thesis where only the lowest-order exchange term is used. The exchange energy term

1Heisenberg’s original convention was to write this with an extra factor of 2, but in line with more
modern literature, we do not do this.
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Chapter 4. Statics and Dynamics of Magnets

then penalises gradients in the magnetisation vector field. In studies where we use the
form (4.3), we take I1 > 0 and I2 > 0, such that the quadratic term favours gradients
in m(r) and the quartic term favours m(r) being smooth.

The exact conversion between the atomistic exchange coupling constants Jij and the
micromagnetic exchange stiffness constant depends on the specific lattice structure under
consideration (a triangular lattice in Appendix B). For a simple cubic lattice where only
nearest-neighbour coupling with constant J is considered, A = JS2n/a, where S is the
spin magnitude, n is the number of atoms per unit cell, and a is the lattice constant.

Dzyaloshinskii-Moriya Interaction

The antisymmetric exchange interaction, more frequently referred to as the
Dzyaloshinskii-Moriya interaction (DMI), arises in systems where the underlying lattice
has noncentrosymmetric symmetry, such that it breaks inversion symmetry r → −r with
respect to the midpoint between the two interacting spins. The effect was introduced by
Dzyaloshinskii, who analysed it in terms of the symmetry of the crystal structure [120],
and a microscopic explanation was offered by Moriya [121]. The coupling is given in this
case by Dij · (Si × Sj), and the Heisenberg exchange Hamiltonian is

ĤDMI =
∑
i>j

Dij · (Si × Sj), (4.5)

which favours spins being perpendicular to each other in a plane perpendicular to Dij ,
the Dzyaloshinskii-Moriya (DM) vector. For spins at positions ri and rj coupled to a
neighbour at site rn, the DM vectorDij is proportional to (ri−rn)×(rj−rn), illustrated
in Fig. 4.2. The combined symmetric exchange and DMI terms can be written as

Ĥex and DMI = −
∑
i>j

SiJijSj , Jij =

 Jij Dz
ij −Dy

ij

−Dz
ij Jij Dx

ij

Dy
ij −Dx

ij Jij

 . (4.6)

The antisymmetry of the off-diagonal terms makes clear the alternative name for this
interaction: the antisymmetric exchange interaction. At a microscopic level, these
interactions result from the hopping of electrons from the site i to n and then from
n to j [117]. As it results from, and scales with, spin-orbit coupling, it is generally weak
compared to symmetric exchange.

The continuum approximation of the DMI term in the energy functional can be derived
in a manner analogous to that of the symmetric exchange interaction. The most general
functional form of the DMI energy contribution is given by

UDMI[m(r)] = Dj
ik

∫
d3rmi∂jmk, (4.7)

where Dj
ik is a tensor of rank three that is determined by the symmetry of the crystal

lattice [115, 122, 123]. Usually, in bulk, most of the components of Dj
ik vanish, leaving

just a few terms in the energy functional. The case where surface terms are relevant is
discussed in Ref. [124]. The bulk terms can be written as a combination of the Lifshitz
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rij

DijDij
Si Sj

Figure 4.2.: Schematic of the arrangement of adjacent spins resulting in the
Dzyaloshinskii-Moriya interaction (DMI). The two spin sites are coupled to
a third, nonmagnetic site (such as an oxygen atom), resulting in a breaking
of the inversion symmetry of the lattice. This symmetry breaking defines
the orientation of the DMI vector Dij .

invariants
L(j)
ik = mi∂jmk −mk∂jmi. (4.8)

For example, systems that stabilise Bloch-type skyrmions, such as MnSi and Cu2OSeO3,
have symmetry class tetrahedral T or octahedral O, for which the DMI energy functional
is

UDMI[m(r)] = D

∫
d3r (L(x)

zy + L(y)
xz + L(z)

yx ) = D

∫
d3rm · (∇×m), (4.9)

where D is the DMI strength. Systems with n-fold cyclic symmetry and n mirror planes
parallel to the rotation axis, Cnv, such as at Fe/Ir interfaces [125] and in polar magnets
such as GaV4S8 [126], have DMI of the form

UDMI[m(r)] = D

∫
d3r (L(x)

xz + L(y)
yz ) = D

∫
d3r (m ·∇mz −mz∇ ·m). (4.10)

As magnetic skyrmions stabilised by DMI of the form (4.10) often result from broken
inversion symmetry at interfaces (despite the existence of bulk crystal systems with that
symmetry class in which skyrmions can be stabilised, as discussed in Section 5.1), DMI
of this form is often referred to as ‘interfacial DMI’, while that of the form (4.9) is
often called ‘bulk DMI’. Systems with the dihedral symmetry D2d such as the Heusler
compound Mn1.4Pt1–xPdxSn [127] have DMI of the form

UDMI[m(r)] = D

∫
d3r (L(x)

yz + L(y)
xz ) = D

∫
d3rm ·

(
∂m

∂x
× x̂− ∂m

∂y
× ŷ

)
. (4.11)

Magnetocrystalline Anisotropy

Due to the lattice structure of the crystal, alignment of the magnetisation along certain
directions may be favoured. Microscopically, this results from the interaction of the
electrons carrying the magnetic moments with the crystal field via the Coulomb and
exchange interactions. Due to spin-orbit coupling, this results in a change in orientation
of the magnetic moment [117]. The microscopic details of this can be computed using
density functional theory [128, 129], which is beyond the scope of this Thesis.

With uniaxial anisotropy, there is one ‘easy axis’ along which it is energetically favourable
for the magnetisation to align. Other types of anisotropy, such as cubic anisotropy, exist,
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though we consider only uniaxial anisotropy in this Thesis as this is the form found in
the hexagonal and tetragonal crystals that typically host skyrmions. Uniaxial anisotropy
can be modelled phenomenologically through the energy functional

Uanis[m(r)] = K

∫
d3r [1− (m · û)2], (4.12)

where K > 0 is the uniaxial anisotropy strength and û is the direction of the easy axis.
We note that this anisotropy discussed here is not to be confused with shape anisotropy,
which results from the demagnetising field, discussed below. The existence of an easy
axis plays an important role in the coercivity of the magnet or the external field that
must be applied to change the magnetisation of the system. Magnetically hard materials,
such as the CoPtCr alloys used in hard disk drives, gain their high coercivities due to
high uniaxial anisotropy strengths2.

Zeeman Interaction

When an external magnetic field Bext is applied to a magnetic system, the magnetisation
tends to align with it due to Zeeman coupling. The corresponding contribution to the
energy functional is (where Bext is measured in Teslas in SI units and Ms is measured
in Am−1)

UZ[m(r)] = −Ms

∫
d3rBext ·m. (4.13)

Magnetostatic (Dipole-Dipole) Interaction

Gauss’s law for magnetism states that magnetic flux density B is divergenceless,
i.e. ∇ ·B = 0. As the magnetic flux density B = µ0(H+M), where H is the magnetic
field and M is the magnetisation, we have that

∇ ·H = −∇ ·M . (4.14)

H can be split up into externally applied field Hext = Bext/µ0 and a demagnetising field
Hdemag, i.e. H = Hext + Hdemag, where the demagnetising field allows the condition
∇ · Bext = 0 to be fulfilled. The demagnetising field can be considered to result from
fictitious ‘magnetic monopoles’ at the edges of the material (coulombian picture) or
from a fictitious current flowing at the material’s surface (amperian picture). At the
microscopic level, the field is the sum of the dipolar fields from the individual dipole
moments within the system, and thus this energy term is often referred to as the dipole-
dipole interaction. The energy contribution due to this field is

Ud[m(r)] = −µ0
2

∫
d3rHdemag ·m, (4.15)

where the prefactor of 1/2 accounts for the double-counting of the individual dipoles.
In-depth discussions of the form of Hdemag can be found in various literature sources
such as Ref. [132]. This is a long-range interaction depending on the size and shape of

2One might expect that the coercivity, or the external field required to demagnetise a material, would be
of the order of the anisotropy field. In reality, it is around an order of magnitude less, a phenomenon
known as Brown’s paradox [130, 131].
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4.1. Magnetostatics

the system. It favours the magnetisation being orientated parallel to the boundary of a
sample to reduce the energy of the stray field, and plays a key role along with symmetric
exchange, in the formation of magnetic domains.

To optimise the calculation of the demagnetising field, various techniques exist beyond
a computationally expensive element-wise summation. For example, fast Fourier trans-
forms with the convolution theorem can be used to determineHdemag [133]. In analytical
calculations, simplifying assumptions can often be made to account the demagnetising
field term. In this Thesis, we make use of the approximation of the demagnetising field
as a correction to the perpendicular magnetic anisotropy energy (PMA) in a thin film,
in which the magnetisation is orientated perpendicular to the plane of the film. In this
case, the demagnetising energy term can be approximated by subtracting µ0M

2
s /2 from

the PMA strength, which is exact in the limit of a ferromagnetic thin film of infinite
extent [134].

Magnetoelectric Interaction

In a magnetoelectric material, there is coupling between the electric field and the
magnetisation, and between the magnetic field and the electric polarisation, known
as the magnetoelectric effect. The magnetoelectric effect was predicted theoretically
by Dzyaloshinskii [135] and soon afterwards experimentally observed by Astrov [136]
in Cr2O3. This can result in the material possessing ferromagnetic order (including
antiferromagnetic, ferrimagnetic, and helimagnetic orders) and ferroelectric order sim-
ultaneously. Materials with multiple ferroic order parameters, especially those with
simultaneous ferromagnetic and ferroelectric order, are known as multiferroics.

Various microscopic mechanisms involving spin ordering can lead to ferroelectricity,
which is discussed in the reviews Refs. [137, 138]. In this Thesis, we only consider the
so-called inverse Dzyaloshinskii-Moriya interaction. A microscopic explanation for this
was given by Katsura, Nagaosa and Balatsky [139], whereby a spontaneous spin current
flows between two atomic sites with mutually canted spins coupled via the exchange
interaction. The polarisation is given by

P = ηeij × (Si × Sj), (4.16)

where eij is the unit vector connecting the spins and η is a coupling constant determined
by the spin-orbit and superexchange interactions. While the DMI results in canted
spins due to noncentrosymmetric bonds, in this effect, canted spins (resulting from, for
example, competing exchange interactions) can result in inversion symmetry breaking
to induce an electric polarisation, hence the name ‘inverse DMI’ [140]. In the continuum
limit, the induced polarisation has the form [141–143]

P = PEa [(∇ ·m)m− (m ·∇)m] , (4.17)

where a is the lattice constant and PE is the polarisation density. The resulting
micromagnetic energy is given by

U = −
∫

d3rP ·Eext, (4.18)

where Eext is the externally applied electric field. We note that the P ·Eext term is of
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Chapter 4. Statics and Dynamics of Magnets

the form of an effective DMI which is experimentally tunable through the manipulation
of an external electric field, such that Eext · P = Dj

ik(E)mi∂jmk, with nonvanishing
tensor elements Dk

ij = −Dk
ji = Eiδjk.

4.2. Landau-Lifshitz-Gilbert Equation

In the previous Section we have discussed magnetisation in the static regime. In this
Section we address its dynamical behaviour. The equation of motion of the magnetisation
vectors used in this Thesis is the Landau-Lifshitz-Gilbert (LLG) equation, which includes
a phenomenological damping constant α introduced by Gilbert in his 1956 doctoral
thesis [144, 145]. The equation reads3

∂m

∂t
= −γm×Beff + αm× ∂m

∂t
, (4.19)

where γ is the electron gyromagnetic ratio γ = ge/2me, where g ≈ 2 is the Landé factor
and e and me are the electron charge and mass respectively. Beff is the effective field
(in Teslas), given by4,

Beff = − 1

Ms

δU [m(r)]

δm(r)
, (4.20)

where U [m(r)] is the energy functional describing the system which takes various forms
in this Thesis, depending on the system being modelled. The first term on the right-hand
side of (4.19) corresponds to a precession about the axis of the effective field, while the
second term corresponds to the damping term, which accounts for energy dissipation
through, for example, eddy currents and phonon excitations. These two terms, along
with the overall evolution of the magnetisation, are illustrated in Fig. 4.3. The Gilbert
damping factor α is of the order of magnitude 10−4 to 10−1 [146–148]. The Landau-
Lifshitz equation, i.e. (4.19) with α set to zero, can be derived from the variational
principle, which is performed in, for example, Refs. [149, 150]. For the case of finite
damping, a Rayleigh dissipation functional can be used to derive (4.19) including the
Gilbert damping term [144, 145]. This equation is valid when the magnetisation can
be considered as a continuous vector field of constant amplitude, i.e. far below the
material’s Curie temperature θc and where typical length scales are sufficiently bigger
than the lattice constant.

Some of the work in this Thesis requires the modelling of the magnetisation texture
under the application of electrical currents. Due to Hund’s rule coupling between the
conduction electrons and local moments, the conduction electrons tend to align their spin
with the localised magnetic moments. The timescale of the magnetisation dynamics
is much lower than that of conduction electrons5, with the timescales of the changes
in the conduction electrons’ spin orientations being sufficiently fast compared to the

3For the numerical implementation of the LLG equation, it is typically written in a form where the time
derivative ∂tm is only on the left-hand side. This can be achieved by substituting the right-hand
side of the equation into the αm× ∂tm term and applying vector identities.

4Often Heff is used, measured in Am−1, in which case the prefactor to the first term on the right-hand
side γ0 = µ0γ is used instead.

5Taking our study in Section 5.3 for example, the characteristic timescale for the magnetisation
dynamics from Table 5.1 is ∼ 10−11 ms−1, while electrons typically spend 10−16 s to 10−15 s at
each spin site [151].
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4.2. Landau-Lifshitz-Gilbert Equation

Beff

m

−m×Beffm× ṁ

Figure 4.3.: Schematic of the Landau-Lifshitz-Gilbert equation (4.19), with the preces-
sion term shown in blue, the damping term shown in red, and the overall
motion shown in magenta.

speed of the electrons that the electrons’ spins following the magnetisation texture
quasiadiabatically [151–153]. This is illustrated in Fig. 4.4. We note in passing that
the torques experienced by the conduction electrons can be interpreted as having been
produced by ‘emergent’ magnetic and electric fields that are created by the magnetisation
texture [150, 154, 155]. As electrons experience a torque during their alignment to a
magnetic moment, the magnetisation experiences an opposite torque, resulting in a net
change in the magnetisation resulting from the spin current, known as spin-transfer
torque (STT). In 2004, Zhang and Li showed how (4.19) could be modified to account
for this effect [156], with the resulting equation reading

∂m

∂t
= −γm×Beff + αm× ∂m

∂t
−m× (m× [bj ·∇]m)− βm× [bj ·∇]m, (4.21)

where β is the degree of non-adiabaticity parametrising how imperfectly the electron’s
spin adiabatically follows the magnetisation and b is a quantity which we define by

b =
PµB

eMs(1 + β2)
. (4.22)

Here, P is the polarisation of the spin-polarised current and µB is the Bohr magneton.
We note that the Zhang-Li STT only acts where there is a spatial variation of the
magnetisation, such that the gradient is nonzero. Before the work by Zhang and
Li, the effect of spin-transfer torque was considered with the spin-polarised current
being polarised by a layer of fixed magnetisation, with the spin polarisation being
constant [157]. This was only applicable to systems with uniform magnetisation in
the direction of the current, for example, when a current flows into a thin film along its
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Chapter 4. Statics and Dynamics of Magnets

Figure 4.4.: Illustration of electron spins aligning with the magnetisation texture adia-
batically. The magnetic moments experience a torque opposite to that
experienced by the electrons (spin-transfer torque).

normal. This is commonly referred to as the Slonczewski spin-transfer torque. The form
of the torque used here better describes, for example, a current applied in the plane of
a thin film. Furthermore, for systems where a ferromagnetic material is coupled to a
heavy metal, spin-orbit coupling can cause an in-plane current in the heavy metal layer
to generate a transverse spin current. This transfers angular momentum to the magnetic
moments in the magnetic layer [158]. These so-called spin-orbit torques are, however,
beyond the scope of this Thesis.

The LLG equation as given in (4.19) and (4.21) is a zero-temperature model. The
problem of thermal fluctuations in ferromagnets was first studied by Brown [159] in 1963,
in which he derived a Fokker-Planck equation for the evolution of the probability density
of orientations of a statistical ensemble of ferromagnetic nanoparticles. The modification
of the LLG equation to account for thermal fluctuations was first investigated by
Lyberatos, Berkov and Chantrell [160] in 1993, giving the so-called stochastic LLG,
or sLLG, equation. The exact implementation of the stochasticity in solving the sLLG
equation can vary. Typically, including in the software used for the simulations in this
Thesis, a randomly fluctuating field is added to Beff of the form [161]

Btherm = η

√
2αkBθ

MsγV∆t
, (4.23)

where η is a random vector drawn from a standard normal distribution at every
integration time step, kB is the Boltzmann constant, θ is the temperature, V is the
volume of a discretisation cell, and ∆t is the time step. This model of thermal
fluctuations is valid for the temperature being uniform across the system, as the material
parameters, most notably the spontaneous magnetisation Ms, vary with temperature.
Furthermore, the temperature should be much lower than the Curie temperature, as
for higher temperatures, fluctuations in the magnitude of the magnetisation become
important [162–164]. A model accounting for such fluctuations is given by the Landau-
Lifshitz-Bloch equation, derived by Garanin [165] in 1997, which provides an interpola-
tion between the low-temperature behaviour described by the sLLG equation and that
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close to the Curie temperature described by Ginzburg-Landau theory. This is, however,
beyond the requirements of the investigations in this Thesis.

For the LLG equation to be numerically integrated over a system, it must be discretised.
Typically, one of two schemes is chosen for this: the finite-difference method (FDM)
and the finite-element method (FEM) [166]. In the former, the system is divided
into a regular grid, typically using cuboidal cells, with each cell corresponding to a
magnetisation vector. The derivatives can be discretised directly in this case. In the
latter, the system is divided into a tetrahedral mesh and the integration is performed
by the transformation of the problem into a variational problem. This method is
better suited to the modelling of systems with curved geometries such as nanospheres,
though in this Thesis, our investigations are restricted to cuboidal geometries. In
this Thesis, all of the micromagnetic simulations are carried out using MuMax3 [167],
which uses the FDM. The size of the discretisation cells must be chosen such that it
is less than the characteristic length scale of the system. For example, for a system in
which the only interactions being considered are symmetric exchange with stiffness A
and uniaxial anisotropy with strength K, this length would be the magnetocrystalline
exchange length6 given by

√
A/K. For finite-difference computations, micromagnetic

solvers typically use explicit Runge-Kutte methods [111, 167]. Many solvers, such as
the Dormand-Prince method [168] used by default in MuMax3, adapt the time step to
keep the error per step approximately constant. The numerical implementation of the
effective fields is discussed in Appendix C.

4.3. Collective Coordinate Modelling of Magnetic Textures

As the magnetisation vector field has an infinite number of degrees of freedom, nu-
merically integrating the LLG equation in micromagnetic modelling can require a large
amount of time and computational resources. When only the behaviour of low-energy
excitations, such as a skyrmion’s translational motion, is sought, it is possible to reduce
the problem to the consideration of the system’s soft modes. A typical example of this
is a skyrmion driven by spin-transfer torque. If it is assumed that the skyrmion does
not deform during the current-driven motion (the ‘rigid skyrmion ansatz’), such that
m(r, t) = m[r −R(t)], where R is the position vector of the skyrmion’s centre, one
can reduce the time integration of the dynamics to the numerical integration of the
evolution of only two degrees of freedom, the skyrmion’s x- and y-positions, enabling
the dynamics of interest to be extracted with significantly reduced computational effort.
This is used in Chapter 9 to calculate the equation of motion of a skyrmion in the
cycloidal background with an applied spin-polarised current. We note that this method
also applies to non-skyrmionic magnetic solitons such as domain walls.

The collective coordinate equation of motion is often referred to as the Thiele equation,
as this approach was used by Thiele in the prediction of the dynamics of magnetic
domains [169]. The Thiele equation of motion for generalised collective coordinates
ξ(t) = {ξ1(t), ξ2(t), . . . }, where m(r, t) = m[r, ξ(t)], can be derived by taking the cross
product of the LLG equation (4.19) with m and writing ∂tm = (∂ξjm)ξ̇j , taking the

6For magnetically soft materials where dipole-dipole interactions dominate over magnetocrystalline
anisotropy, the relevant length scale is instead the magnetostatic exchange length

√
2A/µ0M2

s . For
chiral magnets with DMI, it is typically the spin spiral wavelength.
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dot product with ∂ξim, and integrating over space (making use of the assumption that
|m| is fixed, such that ∂tm ·m = 0). The result is [170, 171]

Gij ξ̇j + Fi − αΓij ξ̇j = 0 , (4.24)

where Fi is the generalised force, Gij = −Gji is the gyrotropic tensor, and Γij = Γji is
the dissipative tensor7,

Fi =

∫
d3r

δU

δm
· ∂m
∂ξi

= −∂U
∂ξi

, (4.25a)

Gij = J

∫
d3rm ·

(
∂m

∂ξi
× ∂m

∂ξj

)
, (4.25b)

Γij = J

∫
d3r

∂m

∂ξi
· ∂m
∂ξj

, (4.25c)

where J = Ms/γ is the angular momentum density. In addition to modelling the
current-driven dynamics of skyrmions in the cycloidal state, we use collective coordinate
modelling in Chapter 11 to obtain equations of motion of internal dynamics of skyrmions
in frustrated magnets.

7In some conventions, (4.25c) includes the damping parameter α as a prefactor, but we omit this and
write α explicitly at points in this Thesis where the dissipative tensor appears in order to make
relationships that include the damping constant more transparent.
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Chapter 5
Stabilisation of Magnetic Skyrmions

The stabilisation of localised topological solitons in a magnetic material occurs through
competition between various interactions, which defines a length scale over which the
structures, such as skyrmions, can form. Various mechanisms that induce twisting in
the magnetisation texture can lead to the formation of skyrmions. In this Thesis, we
consider two such mechanisms, namely competition between symmetric exchange and
DMI, as well as magnetic frustration. We note, however, that other mechanisms beyond
the scope of this Thesis stabilise skyrmions, such as dipole-dipole interactions [172] and
four-spin exchange interactions [125].

5.1. Stabilisation of Skyrmions in Chiral Magnets

By far the most well-studied mechanism by which magnetic skyrmions are stabilised
at the time of writing this Thesis is through the Dzyaloshinskii-Moriya interaction,
favouring the perpendicular alignment of neighbouring spins, which was discussed in
Section 4.1. As this interaction exists in materials with the symmetric exchange
interaction that favours parallel alignment, the result of the competition between the
two interactions is a gradual canting of spins, with the length scale over which the
magnetisation changes being determined by the interactions’ relative strengths. As the
DMI is a chiral interaction, it produces chiral magnetic textures, such as skyrmions and
spin spirals. Skyrmions stabilised through this mechanism tend to have sizes on the
order of 10 nm to 100 nm [24, 26, 173, 174].

As discussed in Section 4.1, different forms of DMI stabilise different types of skyrmions.
While the principle of broken inversion symmetry leading to a canted spin ordering
applies generally, the exact mechanism through which the inversion symmetry is broken
varies between materials. Magnetic skyrmions were first observed in B20 compounds,
which consist of transition metals and group 14 elements with a composition ratio of
1:1. These have the space group P213. These compounds have the crystallographic
class T and hence have DMI of the form (4.9), stabilising Bloch-type skyrmions and
helices, discussed below. Another material that stabilises Bloch-type skyrmions is the
insulator Cu2OSeO3, due to its space group also being P213, despite having a different
atomic arrangement to the B20 compounds. This material’s multiferroicity allows for the
manipulation of skyrmion lattices by the application of external electric fields [175–177].
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Other noncentrosymmetric skyrmion-hosting materials are those with D2d symmetry,
such as the inverse tetragonal Heusler compound Mn1.4Pt0.9Pd0.1Sn [127]. In such
materials, the DMI of the form (4.11) changes sign along perpendicular crystal axes,
allowing the stabilisation of antiskyrmions with alternating Bloch-type and Néel-type
radial profiles around the structure, as shown in Fig. 2.6. Néel-type skyrmions, on the
other hand, can be stabilised by DMI of the form (4.10), where the point group is
Cnv. Examples of crystals with this point group symmetry are polar magnets such as
GaV4S8 [126] and GaV4Se8 [178], where Jahn-Teller distortion drives a phase transition
which causes the lattice to become stretched along one axis, resulting in an electric
polarisation. In this case, the space group is R3m. Néel-type skyrmions can also
be realised at heterostructure interfaces between heavy metals and magnets such as
Fe/Ir [125] and Co/Pt [179] interfaces, where the mismatch of crystal lattices naturally
results in inversion symmetry breaking. Due to the scaling of spin-orbit coupling with
Z4, where Z is the atomic number, the heavy metal with a high Z can have large spin-
orbit coupling, resulting in a high DMI. A detailed discussion of the materials hosting
magnetic skyrmions can be found in Ref. [123].

Figure 5.1 shows schematic magnetic phase diagrams of temperature θ against applied
magnetic field B for materials that host Bloch-type and Néel-type skyrmions. The phase
diagrams for various magnetic materials exhibit a similar overall structure [24, 126, 178,
180–182]. For materials that host Bloch-type skyrmions, shown in Fig 5.1(a), the ground
state below the Curie temperature θc is the helical state, illustrated in Fig 5.2(a). As
the field is increased further, the modulations are overcome, and the system becomes
conical, then field-polarised. In a small pocket of the phase diagram, just below θc, a
skyrmion lattice (SkX), illustrated in Fig. 5.2(b), is stabilised due to thermal fluctuations.
Analytically, this can be derived by incorporating Gaussian thermal fluctuations about
the mean-field solution in the Ginzburg-Landau energy functional [24]. For materials in
which Néel-type skyrmions are stabilised, a schematic phase diagram of which is shown
in Fig 5.1(b), the cycloidal state occurs for lower fields, rather than the helical state.
This is sketched in Fig. 5.1(a).

In this Thesis, we often consider skyrmions in a field-polarised background. The
skyrmions are then not ground states of the system, but rather metastable states with an
energy barrier preventing their annihilation. It has also been suggested that the topology
of magnetic skyrmion textures endows them with resilience to perturbations [183, 184],
though the role of topology, as opposed to thermodynamic considerations in their
stability, is disputed due to the fact that they emerge fundamentally from a discrete
lattice of magnetic moments [185–187].

5.2. Skyrmions in a Cycloidal Background

As discussed in the previous Section, the ground state of chiral magnets for weak or
absent applied magnetic fields is not the spin-polarised state, but rather the spin spiral
state, i.e. the helical or cycloidal state, depending on the form of the DMI present. The
helical state was first proposed by Yoshimori [188] in 1959 to explain neutron diffraction
data from MnO2. This was explained in 1980 by Bak and Jensen [114] in terms of the
competition between symmetric exchange and DMI and was first observed in real space
in 2006 by Uchida et al. [189].
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Figure 5.1.: (a) Generic phase diagram for a helimagnet such as MnSi. At a lower critical
field (Bc1 at zero temperature), the system undergoes a phase transition
from the helical to the conical state, then to the field-polarised state at an
upper critical field (Bc2 at zero temperature). The skyrmion lattice is the
ground state for a small pocket of the phase diagram. (b) Generic phase
diagram for a magnet in which a cycloidal ground state is exhibited, such
as the polar magnet GaV4S8. Note that the exact shapes and sizes of the
regions can vary significantly between materials.

q

Helical

Cycloidal

q

Conical

q

a) b)

Figure 5.2.: (a) Schematic of helical and cycloidal spin textures. In the helical state,
the magnetisation lies in the plane perpendicular to the wavevector q, while
for the cycloidal state, the magnetisation is in a plane in which q lies. (b)
Schematic of a hexagonal lattice of Bloch-type skyrmions.
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Figure 5.3.: (a)-(c) Various stable magnetic states in cycloidal magnets: the cycloidal
ground state, the H-shaped skyrmion (HSk), and the interstitial skyrmion
(iSk) respectively, for κ = 0. (d) The rescaled energy as a function of κ for
the HSk (blue) and iSk (orange). (e)-(f) Spatial distribution of skyrmion
number density of the HSk and iSk respectively. Figure taken from our
publication Ref. [191].

The first theoretical study of skyrmions in a helical background was carried out by Ezawa
[190] in 2011. We can consider two different types of skyrmions: interstitial (iSk) and
H-shaped (HSk) skyrmions. For interstitial skyrmions, a typical circular (usually of the
Bloch or Néel type) skyrmion is embedded between the stripes of the spin spiral, with a
magnetisation texture as shown in Fig. 5.3(c), and skyrmion number density as shown in
Fig. 5.3(f). On the contrary, H-shaped skyrmions can be considered as ‘broken stripes’
in the spin spiral, where the two tips, individually called merons with Nsk = 0.5, form
a bound pair. The magnetisation and skyrmion number density of these objects are
shown in Figs. 5.3(b) and (e) respectively. A helical state without skyrmions is shown
in Fig. 5.3(a) for reference.

The stability and current-driven dynamics of skyrmions in the spin spiral state have
been studied theoretically and experimentally. Unlike for skyrmions in the ‘typical’ case
of the spin-polarised state, the competition between the symmetric exchange interaction
and DMI is sufficient for the skyrmions to be metastable, without the need for a
strong magnetic field or uniaxial anisotropy perpendicular to the plane of the skyrmion.
Furthermore, skyrmions of opposite topological charge can be stabilised in the same
system. This is in contrast to skyrmions in a ferromagnetic background, where the form
of DMI can only stabilise either a skyrmion or antiskyrmion, but not both. While the
motion of skyrmions along the ‘tracks’ of the spin spiral background is a zero mode, the
energy required to move a skyrmion between tracks is very high [192]. The behaviour
of interactions between skyrmions in a spin spiral background also deviates from that in
a ferromagnetic background in that there are strong attractions between the skyrmions
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which can lead to clustering [192–195], instead of repulsion between them.

5.3. Stability of the Cycloidal State

In this Section, we consider the static cycloidal state in the absence of skyrmions, which
is important for our later investigations into the behaviour of skyrmions in a cycloidal
background. We model a thin film in the xy-plane with easy axis ŷ using the energy
functional

U [m(r)] = d

∫
d2r

[
A(∇m)2 +Dm · (ŷ × ∂xm− x̂× ∂ym)−K(m · ŷ)2

]
, (5.1)

where m(r) is the normalized magnetisation vector at position r, A is the exchange
stiffness, D is the Dzyaloshinskii-Moriya interaction strength, and K is the uniaxial
anisotropy strength, which favours (anti)parallel alignment to the y-axis. d is the
thickness of the thin film, assumed to be sufficiently thin that the magnetisation texture
is approximately uniform along the z-direction. For simplicity, we neglect dipole-
dipole interactions, which is a reasonable approximation as the texture has no net
magnetisation, so including it would likely only slightly alter the profile.

To reduce the number of parameters in our study, we rescale quantities according to
Table 5.1. This gives us the rescaled energy functional with a single effective anisotropy
parameter κ = 2AK/D2

Ũ [m(r̃)] =

∫
d2r̃

[1
2
(∂x̃m− ŷ ×m)2 +

1

2
(∂ỹm+ x̂×m)2

+
1

2
m2

x +

(
1

2
− κ

)
m2

y

]
, (5.2)

where the first two terms contribute to the chiral spin spiral structure while the others
act as effective anisotropy terms. This energy functional has been written in completed
square form. For the rest of this Chapter, we drop the tildes.

By requiring that the energy density of a domain wall is negative, as in Ref. [196],
a critical anisotropy strength at which the wavelength of the spin spiral diverges,
κc = π2/8 ≈ 1.23 can be derived. Above this value, a two-domain solution with m = ±ŷ
is favoured. For κ < κc, the ground state of (5.2) is a spin spiral with m rotating in the
yz-plane, given by

m(r) = cos[Θ(r − r0)]q̂ + sin[Θ(r − r0)]ẑ, (5.3)

where Θ is the angle between m and q. We note that the wavevector q is parallel to the
easy axis ŷ. Due to translational invariance in y, we can choose r0 = 0 without loss of
generality. At κ = 0, the profile is

Θ(r) ≡ Θ0
c(r) = q̂ · r = y, (5.4)

corresponding to a cycloidal state state with dimensionless wavelength λ0 = 2π. Varying
the energy functional (5.2) for the profile (5.3) yields the Euler-Lagrange equation

∂2yΘ = κ sin(2Θ). (5.5)
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Characteristic Definition SI Unit

Length 2A/D m
Time 2AMs/γD

2 s
Energy 2Ad J

Effective Uniaxial Anisotropy Strength 2AK/D2 Dimensionless

Table 5.1.: Summary of natural units used in our studies of skyrmions in the cycloidal
state for the rescaling of various quantities to dimensionless units.

This is a sine-Gordon equation mathematically equivalent to the exact equation of motion
of a simple pendulum. Multiplying both sides by ∂yΘ and integrating over y allows the
profile to be written as

Θ(r) ≡ Θc(y) = am

(√
2κc y,

1

c

)
+
π

2
, (5.6)

where the Jacobi amplitude am(u,m) is defined through, if φ = am(u,m),

u =

∫ φ

0

dt√
1−m sin2 t

. (5.7)

The solution (5.6) is defined for 0 < κ < κc, such that the profile (5.4) has been deformed
by the presence of the uniaxial anisotropy. The constant c is given explicitly by

c = (∂yΘ)2/(2κ) + sin2Θ, (5.8)

and is bound by 1 < c < 1 + 1/(2κ) due to the DMI-induced open boundary condition
∂yΘc = 1 [196]1. c is proportional to the energy of the system, which can be seen by
writing (5.2) as

U = Lxκ

∫
dy

[
1

2κ
(∂yΘ)2 − cos2Θ+ ∂yΘ

]
= Lxκ

[∫
dy

(
1

2κ
(∂yΘ)2 + sin2Θ

)
+Θtop −Θbottom

]
= Lxκ(Lyc+Θtop −Θbottom), (5.9)

where Θtop and Θbottom are the values of Θ at the top and bottom boundaries of the
sample. The fact that the energy is invariant with respect to translations in y in the
static case can be seen by projecting the LLG equation (4.19) onto m× ∂ym,

(m× ∂ym) ·
(
m× δU

δm

)
= ∂ym · δU

δm
=
∂U

∂y
= 0, (5.10)

implying that c is constant in y.

As the periodicity of am(u,m) is 4K(m), where K(m) is the complete elliptic integral
of the first kind

K(m) =

∫ π/2

0

dt√
1−m sin2(t)

, (5.11)

1The condition is that, at the edges, ∂yΘ = D/(2A) = 1 in our rescaled units.
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Figure 5.4.: (a) Cycloidal wavelength as a function of the effective anisotropy. The insets
show the magnetisation, which diverges to a two-domain state as κ → κc.
(b) Magnetisation y-component as a function of y over a single wavelength
for various values of κ. Figure adapted from our publication Ref. [191].

the distorted helix has wavelength λc = 4K(1/c)/
√
2κc. The nonlinearity of (5.6)

represents an obstacle to obtaining an approximate analytical expression for c as a
function of κ that minimises the energy density. The interesting limits of the profile
are at κ = 0 and κ = κc. Due to (5.8) with the boundary condition ∂yΘ = 1, in the
limit κ → 0, c → ∞, and

√
2κc → 1. Hence, the profile (5.6) recovers the profile (5.4).

Additionally, K(0) = π/2, recovering the wavelength λc = 2π. In the limit κ → κc,
c tends to its lower bound of 1, and the cycloidal wavelength diverges as K(m → 1)
diverges. By plugging c = 1 into (5.6), we obtain

Θ = arctan[sinh(
√
2κy)] +

π

2
, (5.12)

corresponding to a single domain wall between two regions of opposite in-plane magnet-
isation along ±ŷ.

In addition to these analytical calculations, we determined the dependence of the
cycloidal wavelength λc on anisotropy strength κ using micromagnetic simulations, the
results of which are shown in Fig. 5.4(a). For each value of κ, we varied the y-extent of
the system to obtain the value which minimised the total energy, corresponding to the
relaxed wavelength. To finely vary the vertical extent of the system, we varied the size
∆y of the simulation cells along the y-axis. We first initialised the system as a spin spiral
state with wavelength λ0 = 2πJ/D and set ∆y = 5λ0/Ny, such that five wavelengths fit
vertically in the system. We then looped through a range of values of the y-discretisation
∆y = fλ0/Ny, varying f , and loaded the relaxed spin spiral into the system. For each
value of κ, we found the value of f that minimises the energy, allowing us to determine
the wavelength.

For κ = 0, the profile is sinusoidal, while as κ → κc, the ground state tends towards
a ferromagnetic domain with the magnetisation aligned along ±ŷ. This distortion to
the profile for various values of κ over a single period is shown in Fig. 5.4(b). Unlike

37



Chapter 5. Stabilisation of Magnetic Skyrmions

the ferromagnetic state, the structure of the spin spiral state is strongly influenced by
the confinement of the system for samples where the number of wavelengths is relatively
low, as is the case in this study.

Fig. 5.3(d) shows the energies of both HSks and iSks as a function of κ (with the energy
of the cycloidal background subtracted), and demonstrates that HSks have lower energy
than iSKs, due to the fact that they distort the cycloidal background less. This agrees
with the results from Ref. [192]. For each simulation relaxing the skyrmion, the y-
discretisation ∆y is set such that 5 cycloidal wavelengths fit into the system vertically,
where the wavelength is determined using the results of Fig. 5.4(a). Numerical artefacts
in the data in Fig. 5.3(d) were omitted, resulting in the gaps.

5.4. Frustrated Magnets

In Section 4.1, we discussed interactions of competing order with an energy functional of
the form (4.3). In the above discussion on chiral magnets, only the quadratic term was
relevant, meaning that the exchange energy took shorter form (4.4). In this Section, we
consider centrosymmetric compounds (such that DMI is absent), in which the higher-
order exchange term is relevant, and the competition between symmetric exchange terms
of differing orders plays a pivotal role in the stabilisation of skyrmions.

Various theoretical studies have considered the stabilisation of magnetic skyrmions
by geometrical frustration, with competition between short-ranged exchange interac-
tions [119, 197, 198]. This is illustrated in Fig 5.5(a): if there is antiferromagnetic
coupling between spins on a triangular lattice (or another lattice that induces geometrical
frustration such as a kagome lattice), there is no way for the spins to arrange themselves
to achieve antiferromagnetic alignment between the neighbours [199]. Another way
through which magnetic frustration occurs is via RKKY interaction in itinerant ferro-
magnets, whereby coupling between spins is mediated through the conduction electrons,
resulting in an interaction with a longer range than with geometrical frustration. In this
case, next-nearest neighbours can interact with one another and compete with nearest-
neighbour exchange interactions, which is illustrated for a square lattice in Fig 5.5(b).
Skyrmions stabilised by this interaction have been studied in gadolinium compounds
such as Gd2PdSi3 [200], Gd3Ru3Al12 [201], and GdRu2Si2 [202].

For isolated skyrmions to be stabilised in a ferromagnetic background for a system that
can be described by the energy functional (4.3), an externally applied magnetic field
must be applied. The energy functional then becomes that studied in Ref. [119],

U [m(r)] =

∫
d3r

[
−I1

2
(∇m)2 +

I2
2
(∇2m)2 −MsBext ·m

]
. (5.13)

To reduce the number of free parameters of the theory, it is convenient to rescale the
units to work with dimensionless quantities. We define dimensionless length r̃ in terms
of the dimensionful length r through r =

√
I2/I1r̃, dimensionless applied magnetic field

B̃ext through Bext = (I21/MsI2)B̃ext, and dimensionless energy Ũ through U =
√
I1I2Ũ .

We then obtain the rescaled energy functional

Ũ [m(r̃)] =

∫
d3r̃

[
−1

2
(∇̃m)2 +

1

2
(∇̃2m)2 − B̃ext ·m

]
. (5.14)
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Figure 5.5.: Illustration of competing exchange interactions on a lattice. (a) For two
antiferromagnetically aligned spins, it is not possible to satisfy the antifer-
romagnetic alignment between nearest neighbours. (b) A system with ferro-
magnetically coupled nearest neighbours and antiferromagnetically coupled
next-nearest neighbours has competing exchange interactions.

In our investigations of frustrated magnets, we work exclusively in this rescaled system
and drop the tildes for convenience. The ground state of the energy functional (5.14)
with the externally applied magnetic field along the z-axis, Bext = Bextẑ, is the conical
state

m(r) =


√
1−m2

0 cos(qz)√
1−m2

0 sin(qz)
m0

 , (5.15)

where q is the conical wavenumber, Θ is the cone angle, and m0 = cosΘ, if Bext < 1/4.
Minimising the energy density with respect to q gives q = 1/

√
2, and minimising it with

respect to Θ gives m0 = Bext/(k
2 − k4) = 4Bext. At Bext = 1/4, the system makes a

second-order phase transition to the collinear state. That the conical state is the ground
state for Bext < 1/4 and the collinear state is the ground state otherwise is shown in
Appendix D.

Unlike for skyrmions stabilised in chiral magnets, where a specific value of the skyrmion’s
helicity is favoured depending on the type of DMI, this is not the case for skyrmions
stabilised through (5.14). Here, the helicity is a zero, or Goldstone, mode. In reality, the
demagnetising field slightly favours Bloch-type skyrmions, but this is weak compared to
the other interactions at play in the system [203]. We make use of the ease of tuning the
skyrmion’s helicity in Chapter 11. The typical spin spiral wavelengths associated with
frustrated magnets are typically of the order of 1 nm to 10 nm, which is small compared
to those of chiral magnets2.

2These numerical values can be obtained by, for example, plugging in the values of the exchange integrals
from Paddison et al. [204] into (B.17) and obtaining the cycloidal wavelength λ =

√
8π2I2/I1.

39





Part II.

Current-Driven Creation of
Topological Magnetic Textures
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Chapter 6
Magnetic Texture Creation in the
Ferromagnetic State

The potential applications of topological magnetic textures, such as in data storage and
processing, have been discussed in previous chapters. Important for the implementation
of these magnetic textures in future technologies is the ability to create them, e.g. when
data is written. For the case of domain walls, such as in the original proposal of
racetrack memory Ref. [29], one method to create them on-demand has been studied
in ferromagnetic nanowires by Sitte et al. [205]. Here, the interaction between a spin-
polarised current and a magnetic defect leads to the periodic creation of domain walls,
the frequency of which can be tuned by varying the current strength. Unlike commercial
technologies which require the application of external magnetic fields [206], the system
under consideration provides an all-electrical means to create the domains. A similar
mechanism has been proposed for magnetic skyrmions by Everschor-Sitte et al. [207],
where the interaction between spin-transfer torques and a magnetic impurity leads to
the periodic creation of skyrmion-antiskyrmion pairs. In this Chapter, we first review
the former case of magnetic domain wall creation, before investigating the latter case
further for the creation of magnetic skyrmions by an all-electrical means.

6.1. Current-Driven Creation of Magnetic Domain Walls

The work of Sitte et al. [205] considers a nanowire which is sufficiently thin that spatial
variations in the magnetisation perpendicular to the wire’s axis can be neglected. At one
end of the wire (x = 0), the magnetisation is pinned to point along +ẑ, and a uniaxial
anisotropy term in the energy functional enforces that boundary condition that the
magnetisation points along x̂ as x→ ∞. In the absence of an applied current, the static
magnetisation texture rotates in the xz-plane to satisfy these boundary conditions. For
an applied current with current density j below a critical current density jc, the static
magnetisation textures have a nonzero y-component. Above jc, the texture is no longer
static and there is a periodic creation, or ‘shedding’, of domain walls. These three cases
are illustrated in Fig. 6.1.

In the study, a minimal energy functional containing only symmetric exchange and
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Chapter 6. Magnetic Texture Creation in the Ferromagnetic State

Figure 6.1.: The setup considered in Ref. [205]. For zero applied current, the magnet-
isation rotates in the xz-plane to satisfy the boundary conditions. For a
finite applied current density j below a critical current density jc, the static
texture has a finite y-component. For j > jc, domain walls are created
periodically. Figure taken from Ref. [205].

uniaxial anisotropy contributions is used, which reads

U [m(r)] =

∫ ∞

0
dx [A(∂xm)2 +KΠ(mx)], (6.1)

where Π(mx) is a monotonic function modelling the uniaxial anisotropy with the
boundary conditions Π(0) = 1, Π′(0) = 0, and Π(1) = 0. As usual, A is the exchange
stiffness constant and K is the uniaxial anisotropy strength. The dynamics of the system
are modelled using the LLG equation including the spin-transfer torque terms (4.21). By
considering solutions for the static case where ∂tm = 0, a critical current jc is derived,
above which domain walls of alternating sense are periodically created at the impurity.

The frequency of the domain wall creation is additionally calculated analytically in
Ref. [205] by mapping the problem onto that of a particle oscillating in a potential well,
the exact shape of which is determined by the system parameters, which corresponds
physically to the oscillation of the x-component of the magnetisation. It is found that
the shedding frequency f ∝ √

j − jc which, when the extrapolation of the value of the
applied current for f → 0 is made, yields good agreement with their calculation of jc.
These analytical insights were confirmed using micromagnetic simulations. Subsequent
work by Rodrigues, Sommer and Everschor-Sitte [208] examined a similar setup with a
chiral magnet, with the addition of DMI to the energy functional, which reduced the
threshold current strength required for domain wall creation.

6.2. Current-Driven Skyrmion-Antiskyrmion Pair Creation

The creation of skyrmions has been the subject of various investigations since the first
experimental observations of magnetic skyrmions in the late 2000s and early 2010s. In
many cases, the creation of skyrmions is rather random, as opposed to being a controlled,
on-demand process. One of the earlier and more well-known investigations in this topic
was carried out by Romming et al. [209], who showed experimentally that skyrmions
can be created and deleted using spin-polarised currents from a scanning tunnelling
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Figure 6.2.: Schematic of the system considered in this Section, as well as in Ref. [207].
A steady spin-polarised current is applied to a thin film with perpendicular
magnetic anisotropy, within which a circular impurity with modified uniaxial
anisotropy exists. Figure taken from Ref. [207].

microscope. At a low temperature, the current allows for the energy barrier for the
creation of skyrmions to be overcome. The nucleation of skyrmions in nanodisks through
the perpendicular application of a spin-polarised current has also been investigated
numerically [210]. It has also been shown experimentally that skyrmions can be nucleated
in thin films through focussed ion beam irradiation, which creates defects from which
skyrmions can be nucleated [211, 212]. The geometry of the system can also be exploited
to induce the creation of skyrmions, such as in the cases of the current-driven creation
of skyrmions using an antinotch geometry [213], and the creation of skyrmions from a
constriction in the thin film with the application of a spin-polarised current [214–216].
Other potential mechanisms for the creation of skyrmions include the application of
surface acoustic waves [217], local heating using a laser pulse [218], and the application
of spin-polarised currents to existing antiskyrmions in the system [219].

Here, we will focus on the creation of skyrmion-antiskyrmion pairs in the ferromagnetic
state through the application of a spin-polarised current, which has been demonstrated
in various works. Specifically, the creation of skyrmion-antiskyrmion pairs due to the
interaction of a spin-polarised current with small fluctuations in the ferromagnetic
background was studied by Stier et al. [220]. Furthermore, an experimental study by
Brock et al. [221] demonstrated the creation of skyrmions breaking off from defect sites.
In this Chapter, however, we predominantly draw inspiration from Everschor-Sitte et al.
[207], in which the application of a spin-polarised current to a circular impurity in a thin
film with PMA is considered. The impurity is modelled in micromagnetic simulations
as a circular region of modified uniaxial anisotropy strength, with an additional in-
plane component, illustrated in Fig. 6.2. Above a critical current jc, the interplay
of the spin-transfer torque and the gradients induced by the impurity1 result in the
creation of skyrmion-antiskyrmion pairs. The skyrmion and antiskyrmion move in
opposite directions perpendicular to the axis of the applied current due to their opposite

1Recall that the Zhang-Li spin-transfer torque terms in (4.21) only act on gradients of magnetisation
m.
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Figure 6.3.: Schematic of a continuous deformation of a collinear state into a skyrmion-
antiskyrmion pair. Throughout the deformation, the overall topological
charge remains zero due to the opposite skyrmion numbers of the skyrmion
and antiskyrmion.

topological giving inducing motion in opposite directions in the skyrmion Hall effect,
discussed in more detail in Chapter 9. To conserve topological charge, a skyrmion-
antiskyrmion pair, where the skyrmion and antiskyrmion have opposite Nsk, is produced.
The creation of a skyrmion-antiskyrmion pair through a continuous deformation of a
magnetisation vector field m(r) that is initially collinear is illustrated in Fig. 6.3. A
snapshot of a micromagnetic simulation of this skyrmion-antiskyrmion pair creation is
shown in Fig. 6.4.

In this Section, we obtain the frequency dependence of the skyrmion-antiskyrmion pair
creation frequency f on the applied current density j. We consider a minimal model
with symmetric exchange of strength A, PMA with strength K, and an impurity with a
uniform strength of K̄, modelled by the energy functional

U [m(r)] =

∫
d3r

[
A(∇m)2 +K(1−m2

x) + K̄Π(r)
]
, (6.2)

where Π(r) models the circular impurity, equal to 1 within a circle of radius Ri and
0 outside of it. Defining a dimensionless length r̃ through r =

√
A/K r̃, the energy

functional can be written as

U [m(r̃)] =

∫
d3r̃

(
A

K

) 3
2
[(

K

A

)
A(∇̃m)2 +K(1−m2

z) + K̄Π(r̃)

]
=

∫
d3r̃

[
A

3
2

K
1
2

(∇̃m)2 +
A

3
2

K
1
2

(1−m2
z) +

A
3
2 K̄

K
3
2

Π(r̃)

]
. (6.3)

Multiplying through by
√
K/A3 and defining dimensionless energy Ũ through

U =
√
A3/K Ũ , we obtain the dimensionless energy functional

Ũ [m(r̃)] =

∫
d3r̃

[
(∇̃m)2 + (1−m2

z) + κΠ(r̃)
]
, (6.4)

with only a single free parameter κ = K̄/K. Furthermore, we define dimension-
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Figure 6.4.: Micromagnetic simulation of the pairwise creation of skyrmion-antiskyrmion
pairs due to the interplay of spin-polarised current and the gradients in
magnetisation induced by a circular impurity. The impurity is in the region
shown by the dashed blue circle.

less time t̃ through t = (Ms/γK) t̃, and dimensionless current density j̃ through
j = (eγ

√
AK/PµB) j̃. We make use of this rescaling procedure in various studies

throughout this Thesis, but we only show it explicitly here. The effect of a demagnetising
field in a thin film in which the magnetisation is aligned perpendicular to the plane of the
film can be approximated by subtracting µ0M

2
s /2 from the PMA strength [134], but this

only represents a rescaling in the conversion between SI and dimensionless units in our
case. In our micromagnetic simulations, we fix Ri = 1, κ = 10, and α = 0.15. We relax
the system and ramp up the current over a time tr in a sinusoidal manner such that,
during the ramping, it is given by jr(t) = j sin(πt/2tr), to avoid sharp deformations to
the relaxed system. We choose tr = 30, and subsequently run the system for a (rescaled)
time of 100. We discretise our system into cells of size ∆ = 0.2, and use Nx = 256 cells
along x, Ny = 128 cells along y, and a single cell along z. The current is applied along−x,
which results in skyrmion-antiskyrmion pairs being shed from the impurity along +x. To
determine the skyrmion-antiskyrmion pair creation frequency, we calculate the skyrmion
number in a subsection of the simulation box over the time of the simulation (excluding
the initial ramping), and apply a fast Fourier transform of this. The frequency with the
highest amplitude is the determined creation frequency. This procedure is illustrated in
Fig. 6.5. In Fig. 6.5(b), the numerically calculated skyrmion number does not reach the
ideal value of −1 due to the discretisation.

Having carried out this procedure, we show the skyrmion-antiskyrmion pair creation
frequency as a function of the applied current in Fig. 6.6(a). Contrary to the analytical
results of Ref. [207], which treats the pinning centre as a point defect and finds that
f ∝ √

j − jc, we find that f ∝ j. Fitting a straight line to this and projecting to f = 0,
we find that jc ≈ 2.0, a result which was confirmed using various values of α. The
discrepancy between the scaling of the current found here numerically and analytically
in Ref. [207] could be explained by the fact that, in their work, they assume that the
impurity can be modelled as point pinning site; the spatial extent of the region of
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Figure 6.5.: Illustration of the method used to obtain the creation frequency. (a)
Magnetisation texture, from which the skyrmion number in the region
marked by a red box is calculated as a function of time. (b) Calculated
skyrmion number as a function of time. (c) Fourier transform of skyrmion
number over time, from which the skyrmion-antiskyrmion pair creation
frequency is extracted by finding the position of the peak marked by a
vertical red line.
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Figure 6.6.: (a) Skyrmion-antiskyrmion pair creation frequency obtained as a function
of applied current for a circular impurity of radius Ri = 1 in a ferromagnetic
thin film. (b) Critical current for skyrmion-antiskyrmion pair creation as a
function of impurity radius.

modified anisotropy is not considered.

To investigate the effect of the spatial extent of the impurity, we ran simulations to obtain
the critical current as a function of the impurity radius Ri. For this, we performed an
interval search for a range of impurity radii to calculate the critical current for each.
The results of this are shown in Fig. 6.6(b), which shows that the critical current
drops as a function of the impurity radius. This makes sense physically, as the area
over which the interplay between the spin-polarised current and the gradients occurs
to induce skyrmion-antiskyrmion pair creation increases. We note, however, that the
critical currents obtained using an interval search do not match those extrapolated to in
Fig. 6.6(a), suggesting a breakdown in the linear relationship as the current decreases.
The current-driven creation of magnetic skyrmions in a cycloidal background, instead of
a ferromagnetic background, is the subject of the next Chapter.
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Chapter 7
Current-Driven Skyrmion Creation in the
Cycloidal State

In the previous Chapter, we explored the current-driven creation of skyrmion-
antiskyrmion pairs in a ferromagnetic background. As discussed in Chapter 5, magnetic
skyrmions can also be stabilised in a cycloidal background, in which they are confined
to the natural channels created by the cycloidal texture. In this Chapter, we propose
a protocol for the creation of magnetic skyrmion-antiskyrmion pairs from impurities in
the cycloidal state through the application of a spin-polarised current.

7.1. Stability of the Cycloidal State Under an Applied Current

To understand the current regimes in which the cycloidal state is stable, we can use
the LLG equation with the Zhang-Li spin-transfer torque term (4.21). Working in the
rescaled given units in Table 5.1, this becomes

∂m

∂t
= −m×Beff − (vs ·∇)m+ αm× ∂m

∂t
+ βm× (vs ·∇)m, (7.1)

where vs is the (dimensionless) effective spin velocity, which is the electric current
density up to a prefactor, and hence the terms are used interchangeably in the following
discussion. Its dimensionful form is vs = −jPµB/eγD(1 + β2), where P is the
polarisation, µB is the Bohr magneton, and e > 0 is the absolute value of the electron
charge.

The behaviour of the spin spiral state is split into various regimes, depending on the
applied current density vs. In the presence of impurities which pin the background and
an applied current below a pinning current density vpin, the texture remains static. The
pinning current density is zero for a pure cycloidal state in the absence of impurities.
Above a critical current density vC, the system undergoes a Walker breakdown, which
results in the destabilisation of the long-range order [222]. For vpin < vs < vC, the
texture evolves in a controllable manner. The different regimes are illustrated in Fig. 7.1,
which shows example magnetisation textures for the different current regimes. The exact
values depend on factors such as the geometry and concentration of impurities in the
system. In sufficiently homogeneous systems with straight stripes, an example of the
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Increasing Current
vpin vc vC

Figure 7.1.: Regimes of the behaviour of the cycloidal state as current is increased. Below
an effective spin velocity vpin, the cycloidal magnetisation texture remains
static. Above a lower critical current vc, fluctuations occur on the order of
the cycloidal wavelength λc. Above a higher critical current vC, the long-
range order of the cycloidal state breaks down.

controlled behaviour for vpin < vs < vC is the steady translation of rigid skyrmions. In
the presence of an inhomogeneity, an example is the creation of skyrmion-antiskyrmion
pairs as the spin-polarised current interacts with the gradients in magnetisation induced
by the impurity.

For a defect-free cycloidal state at zero temperature with wavevector direction q̂ = ŷ
such that mx = 0 everywhere, vpin = 0 and the magnetisation gradients couple to the
y-component of a driving current only. This results in a translation of the helix along
the y-direction. Because of this, in our micromagnetic simulations of skyrmions in the
cycloidal state, we freeze the top and bottom boundaries of the system. The regime for
which vpin < vs < vC is split into two further regimes separated by vc: for vpin < vs < vc,
fluctuations in the magnetisation texture are induced on a length scale much smaller
than the cycloidal wavelength λc. For vc < vs < vC, fluctuations have a length scale on
the order of magnitude of the cycloidal wavelength λc, which is the regime interesting
for the controlled creation of skyrmions. Thus, vc represents an approximate critical
current required for the creation of skyrmions in the cycloidal state.

We now estimate the critical current vc for the current-driven creation of skyrmion-
antiskyrmion pairs for an anisotropy strength κ ≲ κc. κc is the anisotropy strength
at which the cycloidal wavelength diverges to give a single domain wall, discussed in
Section 5.3. For this, we assume that the cycloidal state for such a high anisotropy
strength can be reasonably approximated by a series of domain walls. We parametrise
the magnetisation as

m(r) = sinΘ(r)ẑ + cosΘ(r)[cosΦ(r)x̂+ sinΦ(r)ŷ], (7.2)
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with the profile

Θ(r) = arctan
[
sinh

(√
2κ[y − y0(x)]

)]
+
π

2
, (7.3a)

Φ(r) =
π

2
+ φ(x). (7.3b)

Here, y0(x) and φ(x) describe small fluctuations along the tracks due to local perturb-
ations close to a domain wall, y − y0(x) ≪ λc. We then assume that energy deviations
resulting from a small translation y0(x) of the domain wall result in energy perturbations
quadratic in y0(x),

U [m(r)] ≈ U [y0(x), φ(x)] +

∫
dx 2y20/λ

2
c

=

∫
dx

[
1√
2κ

(∂xφ)
2 +

√
2κ(∂xy0)

2 − π

2
φ∂xy0

+
(π
2
+
√
2κ
)
φ2 +

2y20
λ2c

]
, (7.4)

where the last two terms correspond to confining potentials which fix the helicity and
position of the domain wall along the y-axis respectively. For current flowing in the
x-direction and with β = 0, the energy (7.1) for profile (7.3), the LLG equation (7.1)
leads to the linearised equations of motion of the fluctuations

∂tφ =
(
vx +

π

2

)
∂xφ−

√
2κ∂2xy0 +

2

λ2c
y0 −

√
2κα∂ty0, (7.5a)

∂ty0 =
(
vx +

π

2

)
∂xy0 +

1√
2κ
∂2xφ−

(π
2
+
√
2κ
)
φ+

1√
2κ
α∂tφ. (7.5b)

For a small damping parameter α, this gives, for κ ≲ κc, that perturbations in the
system damp out for currents below a critical value of

vκ≲κc
c ≈

√
2κ+

π

2

√
2κ− π

2
, (7.6)

which is vc ≈ 0.65 in limit of κ → κc = π2/8. This is derived in Appendix E. Although
the dynamics of the magnetisation texture around a magnetic impurity in the presence
of spin-polarised current are generally much more complex than can be captured in this
simplified analytical calculation, it gives a rough estimate of the current strength that
must be applied to create skyrmion-antiskyrmion pairs in the cycloidal state.

7.2. Current-Driven Creation of Skyrmions in the Cycloidal
State

We now turn to micromagnetic simulations to study the current-driven creation of
skyrmions in the cycloidal state. For this, we add to the energy functional (5.2) an
additional uniaxial anisotropy term corresponding to a circular impurity of radius Ri
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centred at (xi, yi), with anisotropy strength κi and easy axis n̂. Explicitly, this is

Ui[m(r)] = −
∫

d2r κi(n̂ ·m)2H
[
R2

i − (x− xi)
2 − (y − yi)

2
]
, (7.7)

where H(x) is the Heaviside step function with H(x) = 1 for x ≥ 0 and H(x) = 0 for
x < 0. As shown in Figs. 7.2(a) and (d), the inhomogeneity induces a local deformation
of the helix. This leads to an instability for a drive above vc. Figure 7.2 also shows the
critical current densities calculated using micromagnetic simulations for various ratios
of the impurity anisotropy strength κi to the global anisotropy strength κ, and impurity
radii Ri, determined using an interval search, analogous that used in Section 6.2. The
results are shown for impurities with easy axes along x̂ and ẑ, and currents along +x̂
and −x̂. In these simulations, we take κ ≈ 0.31, α = 0.05, and β = 0. Generally,
the critical current decreases as a function of the impurity’s anisotropy strength κi due
to the initial perturbation being stronger for higher κi. A higher anisotropy size plays
a greater role than its strength in determining the critical current, producing a larger
initial perturbation that couples more strongly to spin-transfer torque. We note that
the values for n̂ = ẑ in Figs. 7.2(e) and (f) are identical for currents along the positive
and negative x̂ directions due to the mirror symmetry along x̂ for an easy axis along
ẑ. In general, these values of vs are within an order of magnitude of the v

κ≲κc
c ≈ 0.65

predicted analytically in (7.6). However, assigning a precise numerical value to the
critical current from the micromagnetic simulations is not trivial, as the domain wall
becomes increasingly distorted with increasing currents at this order of magnitude. As
such, there is no definite transition value of the current beyond which increasing the
currents leads to a breakdown of the domain wall.

The (dimensionful) energetic parameters used in our micromagnetic simulations are
summarised in Table 7.1. In all simulations, periodic boundary conditions are applied
along the x- and y-axes. The system is discretised into cells of 1 nm along the x- and
z-axes, while along the y-axis, the discretisation is chosen such that an integer number
of cycloidal wavelengths fit into the system. The cycloidal background is pinned by
freezing the spins at the edges of the system along the y-direction, i.e. at the top
and bottom. Furthermore, for the simulations in which skyrmions are shed, absorbing
boundary conditions are used at the horizontal ends of the system along the x-axis. The
value of DMI strength is 2Dc, where Dc = 4

√
AK/π is the critical DMI strength above

which the cycloidal state is stabilised [196].

The impurity is placed at x = Lx/4 for a current along the +x-direction and at
x = 3Lx/4 for a current along the −x-direction. The criterion we use for shedding is
that the z-component of the magnetisation at the centre of the system (Lx/2, Ly/2),
which is aligned along −ẑ initially, becomes positive (if there is no shedding, the
simulation finishes after 20 ns of steady current). Throughout this work, where there
are impurities in the system, the impurities are placed such that their position within
the helix minimises energy. Where the impurity’s easy axis is ẑ, it is placed where the
magnetisation is out-of-plane, at y = Ly/2, and when it is x̂, the impurity is placed
where the magnetisation is in-plane, y = Ly/2 − λc/4. In each simulation, the current
is ramped up to the maximum value sinusoidally over 20 ns.
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Figure 7.2.: (a), (d) Magnetisation texture around the impurity, depicted as a dashed
yellow circle, for an easy axis within the impurity along the x- and z-axes
respectively. (b), (c), (e), (f) The critical current density for the creation of
skyrmions as a function of impurity radius and relative anisotropy strength
κi/κ. For all panels, κ ≈ 0.31, α = 0.05, and β = 0. For the textures in (a)
and (d), 2Ri = λ0 and κi/κ = 10. (e) and (f) are identical due to the mirror
symmetry along the x-axis for an impurity easy axis along ẑ. Figure taken
from our publication Ref. [191].

7.3. Protocol for the Controlled Creation of Skyrmions in the
Cycloidal State

In the following, we bring together the controlled creation and current-driven motion
of magnetic skyrmions to propose a protocol by which skyrmions can be created in the
cycloidal state. We use n̂ = x̂, κi = 10κ, 2Ri/λ0 = 1.0, and a current in the x-direction1

which, referring to Fig. 7.2(c), has a relatively low critical current strength vc. The
method from Ref. [207] in which a constant current was used to periodically create
skyrmion-antiskyrmion pairs. In contrast, we propose a protocol in which the currents
in the x- and y-directions are periodically switched on and off, which can be repeated

1Recall that the sign of vs is opposite to that of the current.

Quantity Symbol Value Unit

Exchange Stiffness A 10−11 Jm−1

Uniaxial Anisotropy Strength K 105 Jm−3

DMI Strength D 2.55× 10−3 Jm−2

Saturation Magnetisation Ms 106 Am−1

Electric Current Polarisation P 1 Dimensionless

Table 7.1.: Parameters common to all simulations in this investigation. Simulation-
specific parameters are discussed in the text.
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Figure 7.3.: Overview of the all-electrical protocol to create H-shaped skyrmions by the
application of a spin-polarised current to an impurity in the cycloidal state.
The details of the HSk/anti-HSk creation (A)-(E) are shown in Fig. 7.4.
(E)-(H) show each step: the initial skyrmion-antiskyrmion pair creation, the
current-driven motion of the skyrmion away from the impurity, the impurity
after removing the domain wall inside of it using a current pulse, and the
subsequent creation of a skyrmion-antiskyrmion pair. Figure taken from our
publication Ref. [191].

an arbitrary number of times to create an arbitrary number of skyrmion-antiskyrmion
pairs. The full protocol, shown in Fig. 7.3, is divided into three steps:

Step 1 The current along the x-direction is ramped up to just above the critical current
vc. It is increased sinusoidally to a constant current to ensure that the change is not
too abrupt. The current is maintained at a constant value for sufficiently long such that
the skyrmion-antiskyrmion pair is created before it is decreased in a similar sinusoidal
manner. Note that this creates a domain wall inside the impurity which hinders further
shedding, which can be seen in Figs. 7.3(E) and (F).

Step 2 A constant current is applied in the y-direction, which drives the skyrmion away
from the impurity. The skyrmion and antiskyrmion move in opposite directions.

Step 3 A short, sharp current pulse is applied along the −x-direction, which resets the
impurity by causing the meron and antimeron on either side of the impurity to collide
and annihilate.

The protocol then goes back to Step 1 to produce a subsequent skyrmion-antiskyrmion
pair. In principle, it is possible to produce an arbitrary number of skyrmions by
repeating this process indefinitely. It may also be possible to use the skyrmions and
antiskyrmions as binary digits (bits) with, for example, a skyrmion representing a ‘1’
and an antiskyrmion representing a ‘0’, analogous to as proposed in Ref. [223]. The
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Figure 7.4.: Creation of a skyrmion-antiskyrmion pair in the cycloidal state through the
application of a spin-polarised current to an inhomogeneity. The top row
shows the magnetisation configuration, while the bottom row shows the
corresponding skyrmion number density. Figure taken from our publication
Ref. [191].

ability to create skyrmions confined in the natural lanes of the cycloidal background
makes this protocol promising for their application in the data storage and processing
applications discussed in Chapter 2.
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Chapter 8
Current-Driven Creation of Magnetic
Textures in Bulk Systems

The discussions of Chapters 6 and 7 have been concerned with quasi-two-dimensional
thin films. Specifically, we have considered the creation of the skyrmion-antiskyrmion
pairs at impurities. In bulk systems, different magnetic structures exist, one of which is
the smoke ring-like magnetic vortex ring. Vortex rings can be both topologically trivial,
with a Hopf index of zero, and nontrivial, with a nonzero Hopf index. In this Chapter,
we first review the literature surrounding magnetic vortex rings. We then consider
their current-driven creation through a similar mechanism to that of the skyrmion-
antiskyrmion pair creation discussed in previous chapters.

8.1. Current-Driven Dynamics of Magnetic Vortex Rings and
Hopfions

Vortex rings are widely known in the context of fluid dynamics, where they are localised,
toroidal regions of a turbulent fluid in which the fluid circulates about the closed axis
line [224]. Smoke rings are a well-known example of this. Analogous structures exist in
ferromagnetic materials, where the magnetisation field forms a ring shape that rotates
around the vortex axis line. This is illustrated in Fig. 8.1, which shows a magnetic
vortex ring illustrated by lines of constant magnetisation direction propagating along its
symmetry axis.

The dynamic stabilisation of vortex ring textures in ferromagnetic materials has been
studied theoretically in various works. In the 1970s, Dzyloshinskǐı and Ivanov [225] found
that topologically nontrivial vortex rings could be stabilised in systems with symmetric
exchange and uniaxial anisotropy by the precession of the magnetisation about the
symmetry axis. This problem has been examined in more detail by Borisov and Rybakov
[226] using finite-element micromagnetic modelling. However, it was pointed out by
Papanicolaou [227] that, for magnetic vortex rings with a nonzero Hopf index, their
dynamic stabilisation necessitates a simultaneous translation along the symmetry axis,
illustrated in Fig. 8.1. This is analogous to the dynamic stabilisation of propagating
smoke rings, which retain their structure as they propagate through air, until energy
losses due to friction cause them to collapse.
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Figure 8.1.: Illustration of a propagating magnetic vortex ring, represented by its preim-
ages (lines of constant magnetisation direction). In this case, the vortex ring
has a Hopf index of 1.

Papanicolaou’s study Ref. [227] laid a heuristic foundation for research into magnetic
vortex rings, and a numerical study of the propagation of magnetic vortex rings was
carried out in 1999 by Cooper [228] for both topologically trivial (zero Hopf index)
and nontrivial (nonzero Hopf index) vortex rings. It was confirmed that, within the
framework of the LLG equation, magnetic vortex rings of various Hopf indices could
be stabilised through their propagation at a constant speed along the symmetry axis
of the system, with a concurrent precession of the magnetisation about the symmetry
axis. The stability and robustness in the presence of perturbations of these propagating
vortex rings was investigated by Sutcliffe [229] in 2007. Sutcliffe found that the presence
of uniaxial anisotropy in the system resulted in a pinching instability of the vortex rings.
In the absence of an easy axis, however, the vortex rings were still stable under the
breaking of the axial symmetry of the initial field configuration.

Various research works from the late 2010s into the early 2020s investigating the
propagation of magnetic vortex rings have accompanied the rise in interest in magnetic
hopfions. The current-driven dynamics of hopfions under the application of both spin-
transfer and spin-orbit torques were studied by Wang, Qaiumzadeh and Brataas [102]
in 2019. Unlike with magnetic skyrmions, where there is a component of motion
perpendicular to an applied spin current (the skyrmion Hall effect, explored in more
detail in Section 9.1), the direction of motion of hopfions is in the direction of the applied
current, due to a vanishing gyrovector. As such, magnetic hopfions do not suffer from an
analogy of the skyrmion Hall effect, and propagate either parallel or perpendicular to the
applied current, depending on whether the hopfion is of Bloch- or Néel-type (referring
to the type of skyrmion in a plane through the hopfion), and whether spin-transfer or
spin-orbit torque is applied. In Ref. [102], the hopfions are stabilised geometrically by
confinement in a thin film (of sufficient thickness for the hopfion to exist) analogous to
the situation in Refs. [60, 88, 89] discussed in Sec. 3.2, and as such, motion along the
axis perpendicular to the film is suppressed.

A further 2020 work by Liu et al. [67] considered a hopfion stabilised by competing
exchange interactions, analogous to in Refs. [71, 84], without confinement to a thin film.
They found using both collecting coordinate modelling and micromagnetic simulations
that, in the presence of spin-transfer torque from a spin current applied perpendicular
to the hopfion’s symmetry axis, in addition to a translational motion of the hopfion,
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a rotation of the hopfion’s symmetry axis was induced. When the current was instead
applied along the symmetry axis, in addition to a translation along the direction of the
current, a rotation of the structure about the symmetry axis was induced, as well as a
dilation of the structure.

8.2. Current-Driven Creation of Magnetic Vortex Rings

In this Chapter, we show that magnetic vortex rings can be created through the
interaction of spin-transfer torques at magnetic impurities in a manner analogous to
the creation of skyrmion-antiskyrmion pairs in thin films. We show results for both
spherical and toroidal impurities, but the process is similar in each case. To model
such processes, we consider a minimal model with the lowest-order symmetric exchange
interaction, uniaxial anisotropy along the current direction x, and a region of modified
anisotropy to represent an impurity. For this, we use the energy functional

U [m(r)] =

∫
d3r

[
A(∇m)2 +K(1−m2

x) + K̄Π(r)
]
, (8.1)

identical to (6.2), with the exception that x is now the easy axis. The functional form
of Π(r) is naturally also different, being equal to 1 within three-dimensional impurity
(discussed below) and 0 elsewhere. As in Chapter 6, this can be rescaled to

Ũ [m(r̃)] =

∫
d3r̃

[
(∇̃m)2 + (1−m2

x) + κΠ(r̃)
]
, (8.2)

where the dimensionless length, energy, time, and current density are as in Chapter 6,
and κ = K̄/K. As in previous investigations, we ramp the current up sinusoidally to a
constant value, and we set β = 0.

We first consider a toroidal impurity, for which the results are shown in Fig. 8.2. This
impurity is located at x = 0, such that only half of it is embedded in the sample.
We choose this over an embedded ring-shaped impurity for two reasons. Firstly, it is
more experimentally feasible to consider impurities at the edge of the sample as opposed
to in bulk. Secondly, we found empirically that the vortex ring creation was more
controlled (for example, with the vortex rings holding their shape for longer) than where
the impurity was not at the boundary. In the top-left of Fig. 8.2, isosurfaces of constant
z-component mz = 0.7 and mz = −0.7 (which enclose preimages mz = 1 and mz = −1)
are shown in red and blue respectively. It is evident that the preimages do not link,
such that the vortex rings have Hopf index H = 0, which we confirmed by numerical
integration of the Whitehead formula (3.3) using the code in Appendix A. Also shown in
a horizontal slice in the xy-plane, showing that the cross-section through the vortex ring
consists of two in-plane skyrmion-antiskyrmion pairs. To make this clear, a subset of a
slice through the vortex ring is shown, with the colour maps showing the out-of-plane
component mz of the magnetisation and the skyrmion number density ρsk. These vortex
rings propagate some distance, but their size eventually decreases and they collapse due
to energy dissipation.

We now turn to the case of a spherical impurity, which is shown in Fig. 8.3. This is
analogous to that with a toroidal impurity, with the difference that a slice through the
vortex rings reveals only a single skyrmion-antiskyrmion pair, rather than two. This can
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Figure 8.2.: Micromagnetic simulation of the periodic creation of magnetic vortex rings
through the application of spin-transfer torque in the presence of a ring-
shaped impurity at the boundary of a ferromagnet. On the top-left, the
isosurfaces mz = 0.7 and mz = −0.7 are shown in red and blue respectively.
In the centre, the out-of-plane component of magnetisation is shown. On the
right, the magnetisation texture of a cross-section through the vortex ring
is shown with both the z-component of the magnetisation and the skyrmion
number density ρsk (in arbitrary units).

be understood by analogy with the skyrmion-antiskyrmion pair creation in a thin film
discussed in Chapter 6, where a slice through the centre of the system reveals only a
single impurity, rather than two separate impurities as with a slice through a ring-shaped
impurity. In this case, we also see unlinked preimages, i.e. vortex rings with H = 0.

In addition to the results presented in this Chapter, we speculate that the creation of
vortex rings with nonzero Hopf indices through the interaction between spin currents
and impurities might be possible under the correct circumstances. For example, this may
be possible with the introduction of an interaction that induces twisting, encouraging
the interlinking of preimages. We note, however, that this would likely involve a more
convoluted experimental setup than that investigated here, and that further simulations
with the inclusion of DMI did not yield hopfions. Furthermore, we note that any hopfions
produced may not necessarily need to be stable in bulk, just as DMI that stabilises
skyrmions does not need to be present for the skyrmion-antiskyrmion pair creation
discussed in Chapter 6.

Another method by which magnetic hopfions may be created could be from existing
bulk magnetic structures with H = 0 through the variation of an external parameter,
such as the magnetic field. This was investigated in Ref. [60], where varying the applied
magnetic field can transform a monopole-antimonopole pair into a hopfion. Aside from
this, experimental evidence has suggested that topologically trivial vortex rings are stable
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Figure 8.3.: Vortex ring creation from a spherical impurity, analogous to Fig. 8.2.

in their own right [91], and may themselves have applications similar to those proposed
for skyrmions and hopfions, such as in neuromorphic computing.
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Chapter 9
Current-Driven Motion of Magnetic
Skyrmions

The current-driven motion of magnetic skyrmions in the presence of spin-transfer torques
is well-understood1, and has been the subject of much theoretical and experimental
investigation. It was first observed experimentally by Jonietz et al. [33] in 2010, who
observed the current-induced rotation of a skyrmion lattice. They found that the currents
required to depin the skyrmions were around five orders of magnitude lower than those
required to set domain walls in motion. Translational motion of skyrmions was later
observed by Yu et al. [233] using LTEM. In this Chapter we discuss the fundamentals
of current-driven skyrmion motion, before considering the specific case of skyrmions in
a cycloidal background.

9.1. Fundamentals of Current-Driven Motion of Skyrmions

As discussed in Chapter 4, the current-driven dynamics of arbitrary2 magnetic textures
can be modelled by integrating (4.21). When studying the current-driven dynamics of
skyrmions, typically only the translational soft modes are of interest, and it is thus
often preferable to use collective coordinate modelling, as discussed in Section 4.3. This
has the advantage that the computational resources required to solve for the current-
driven motion are greatly reduced, as well as that the approximate analytical equations
of motion, and hence the motion’s underlying mechanisms, are more easily understood
than the LLG equation, which involves an infinite number of degrees of freedom.

To obtain the equation of motion of the collective coordinates, in this case the x- and y-
position of the skyrmion, we assume that the skyrmions have a rigid structure such that
the time-dependent magnetisation dynamics can be written as m(r, t) = m(r − Ṙt),
where R = (x, y) is the position of the centre of the skyrmion given by

R =
1

Nsk

∫
d2r ρsk(r)r, (9.1)

1The dynamics induced by spin-orbit torques is also well-understood [215, 216, 230–232], but is beyond
the scope of this Thesis.

2Arbitrary as far as the assumptions made in the micromagnetic model still apply, e.g. the characteristic
length scales being at least several lattice constants.
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Electron Flow

Skyrmion Trajectory

Figure 9.1.: Illustration of the skyrmion Hall effect. Due to the skyrmion’s nonvanishing
gyrovector, the skyrmion experiences a force perpendicular to the flow of the
spin-polarised electrons in addition to the parallel component. This results
in the skyrmion following a curved trajectory.

where ρsk = m · (∂xm× ∂ym)/4π. In this discussion, we work in the dimensionless unit
system introduced in Chapter 5. Projecting the LLG equation (7.1) along m×∂xm and
m× ∂ym gives the Thiele equation of motion

G × (vs − Ṙ) + Γ(βvs − αṘ) + F = 0, (9.2)

where G = 4πNskẑ is the gyrovector, analogous to (4.25b), Γ is the dissipative tensor3

given by (4.25c), which, in the dimensionless units introduced in Chapter 7, becomes
Γij =

∫
d2r ∂xm · ∂ym, and F = −∂xU [m(r)]x̂ − ∂yU [m(r)]ŷ is the force resulting

from spatial variations in the energy functional. For low current densities, the current-
induced forces are cancelled out by the pinning forces, while at higher currents, the
skyrmion undergoes translational motion. The first term in (9.2) represents a Magnus
force term, which results in a component of the skyrmion’s velocity perpendicular to the
applied current, illustrated in Fig. 9.1. This is somewhat analogous to the Magnus force
experienced by a football that is spinning as it flies through the air [155], and can be
understood as a counter-force to the force on the conduction electrons resulting due to
the emergent magnetic fields mentioned in Section 4.2. The second term, involving the
dissipative tensor, captures the force pushing the skyrmion in the direction of the spin
current.

The Magnus force is responsible for the skyrmion Hall effect, which is generally viewed
as detrimental. This is because it complicates the current-driven motion of skyrmions in
device applications, such as in skyrmion racetrack memory. The existence of a nonzero
angle between the current direction and the direction of motion of the skyrmion is
known as the skyrmion Hall effect. Various methods have been proposed to overcome
it, including coupling skyrmions of opposite polarity in bilayers [234], engineering the
potential at the edges of the racetrack [235–238], using in-plane- [216] and antiskyrmi-
ons [239], using hybrid bulk and interfacial DMI [240], and using curved tracks with field
gradients [241]. In some contexts, the skyrmion Hall effect is viewed as advantageous,
where it is exploited in combination with the device geometry to produce a ratchet
motion [242]. A further method could be to exploit the natural confinement of skyrmions

3In the context of Thiele modelling of the translational modes of skyrmions, Γ is often written as D,
but we keep our notation consistent with that in Section 4.3.
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to the lanes of a spin spiral background, which is the subject of the rest of this Chapter.
In this context, it has been proposed that skyrmions in different lanes could be used to
encode bits by, for example, a skyrmion in one lane representing a ‘1’ and in another
lane, a ‘0’ [223]. Much of the content of the following Section was published in our paper
Ref. [191]. The current-driven creation of skyrmions in the helimagnet FeGe has since
been experimentally demonstrated [243], and the current-driven motion of iSks has been
discussed in a recent preprint [244]. In the next Section, we study the current-driven
dynamics of skyrmions in the cycloidal background.

9.2. Current-Driven Motion of Skyrmions in the Cycloidal
State

In the derivation of (9.2), no assumptions were made about the specific structure of
the skyrmions or the background except for the rigidity of the skyrmions, meaning that
the equation can also be applied to the case of interstitial and H-shaped skyrmions in
a cycloidal background. Assuming now that F acts to constrain the skyrmion to move
along the direction of the cycloidal stripes, i.e. the x-direction, (9.2) becomes

Ṙ =

(
4π(vs · ŷ)
αΓxx

+
β

α
vs ·

Γxxx̂+ Γxyŷ

Γxx

)
x̂. (9.3)

For small vs, the skyrmions do not significantly deform from their rigid shape. Hence,
the components of Γ remain approximately constant and the skyrmion speed is linearly
proportional to vs. For β = 0, only the y-component of vs contributes to the skyrmion’s
motion. This linearity for small vs can be seen in Fig. 9.2(a), which shows the HSk and
iSk speed as a function of current density. Shown are the skyrmion speeds calculated
from both micromagnetics and (9.3), where, in the latter case, the dissipative tensor
components Γij have been calculated using micromagnetics, shown in Fig. 9.2(c). The
deformation of both the iSk and HSk for high currents close to their destabilisation are
shown as insets in Fig. 9.2(a). The results for the HSk are shown for a wider range of
currents as the iSk is less stable. The iSk collides with the striped background, becoming
annihilated, for higher current densities. Shown in Fig. 9.2(b) is the skyrmions’ speed as
a function of 1/α, showing that a higher value of α increases the skyrmion’s speed. The
results are approximately linear for low vs, as predicted by (9.3). For higher drives, the
relation between skyrmion speed and applied current strength becomes nonlinear due
to the deformation of the skyrmions. Figure 9.3 shows the magnetisation texture from
a micromagnetic simulation of the current-driven motion of both iSks HSks and iSks in
micromagnetic simulations.

To obtain the skyrmions’ speeds in Figs. 9.2(a) and (c), we calculated the skyrmion’s
position using (9.1) numerically, with the skyrmion number density ρsk calculated in a
similar manner as with Nsk, discussed in Appendix A. We differentiated this numerically
to obtain the skyrmion velocity for a range of different currents. In Figs. 9.2(a) and (c),
we set α = 0.1. We also ran the simulations with α = 0.01 but found that the skyrmions
were too unstable in this case. The calculation is performed in the steady-state regime
when the skyrmion moves at a constant speed after an initial sinusoidal ramping of the
current from zero. In Fig. 9.2(b), α is varied, and current density is kept at vs = 2.1×10−3

for all values of α. The tensor elements shown in Fig. 9.2(c) were calculated numerically
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Figure 9.2.: Analysis of skyrmion motion in the cycloidal phase induced by spin-transfer
torques. (a) Speed of the H-shaped and interstitial skyrmions as a function
of the applied current from both micromagnetic simulations and (9.3), where
the dissipative tensor elements Γij are calculated from micromagnetics. The
insets show both types of skyrmions close to the limits of the current above
which they are no longer stable. (b) Speed as a function of inverse damping.
In both cases, the relation is linear for small driving currents and becomes
sublinear for larger drives. (c) Components of the dissipative tensor as a
function of the applied current strength. For this plot, κ ≈ 0.31 and β = 0.
In (a) and (c), α = 0.1, and in (b), vs ≈ 2.1 × 10−3. Figure adapted from
our publication Ref. [191].
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Figure 9.3.: Snapshots of a micromagnetic simulation of the current-driven motion of
H-shaped (left) and interstitial (right) skyrmions in a cycloidal background.
The current is applied along the y-axis, and the skyrmions move from left
to right. Here, κ ≈ 0.31, α = 0.1, β = 0, and vs ≈ 2.1× 10−3.
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from the micromagnetic simulations using a discretised version of (4.25c).

Confinement of skyrmions by the cycloidal background both mitigates the skyrmion
Hall effect and results in higher skyrmion speeds for a given applied current [192]. This,
combined with our protocol to create skyrmions in the cycloidal state from Chapter 7, is
promising for potential applications of skyrmions in data storage and processing. As a
final remark, although these results are reported for the case of a cycloidal background
with interfacial DMI, the qualitative results are also applicable to a helical4 background
with bulk DMI, in materials such as FeGe.

4In our publication Ref. [191], we used ‘helical’ and ‘cycloidal’ interchangeably. In this Thesis, however,
we differentiate between the helical and cycloidal as shown in Fig. 5.2.
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Chapter 10
Internal Modes of Skyrmions in Chiral
Magnets

In many studies, such as those in Chapter 9, magnetic skyrmions are considered to
be rigid textures so that their dynamics can be reduced to their translational motion
within the material. However, in numerous studies, interest has been shown in the
internal dynamics of skyrmions [245–247]. In this Chapter, we will numerically show
that skyrmion eigenmodes can be excited by externally applied magnetic fields oscillating
at unit fractions of the eigenfrequencies of a skyrmion. Furthermore, we show that
the general theory applies to general topological solitons in magnetism, without the
assumption of a specific microscopic structure.

10.1. Skyrmion-Magnon Interactions

Spin waves are collective, low-energy excitations in the ferromagnetic ordering, which
are quantised as magnons. Spin excitations have been an area of focus of research
interest in the emerging field of magnonics [246, 248], with interest growing in potential
applications of spin waves in information transmission, storage, and processing. This can
be applied to, for example, logic devices [249, 250] or neuromorphic computing [96, 251].
An advantage of the use of spin waves in computing applications is the lack of an electric
current, and therefore energy losses through Joule heating [252]. Furthermore, magnons
have tunable frequencies that cover a broad range of values, from the GHz to THz
range, with wavelengths from micron to sub-nanometre scales [253], allowing for coupling
between microwave electronics and photonics systems. Their ease of manipulation by
applied magnetic fields within magnetic nanostructures that allow for re-programming
on sub-nanosecond timescales also makes them attractive [254]. Furthermore, the
long propagation distances observed with magnons (on the order of centimetres), in
comparison with those of spin diffusion, (less than a micron) also make them promising
candidates for use in information transfer [249].

For a ferromagnet with symmetric exchange and uniaxial anisotropy, the magnon
dispersion relation is ω = 2γ(K + Aq2)/Ms, where q is the magnon wavenumber and
the other parameters are as used elsewhere in this Thesis. This can be derived from the
LLG equation (4.19) by assuming fluctuations of the form ∼ exp[i(q ·r−ωt)] [255]. The
anisotropy therefore creates a gap above which a continuum of magnon states exists.
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Figure 10.1.: Sketch of the decomposition of a skyrmion’s smooth deformation into
discrete eigenmodes. Black represents the magnetisation texture going
into the page, and white out of it. R0 is the skyrmion’s equilibrium
radius, and rn characterises the various bound modes, where n is an integer
characterising the quantised angular momentum. Figure adapted from our
publication Ref. [258].

Below the magnon gap, resonance modes of skyrmions are classified by an integer
n, representing a quantised angular momentum. The behaviour of these eigenmodes
depends on the value of n. n = 0 corresponds to a skyrmion’s breathing modes, where
its centre remains fixed and its radius oscillates. Due to the rotational symmetry of this
mode, it couples to an out-of-plane field. n = ±1 corresponds to gyration modes, where
the skyrmion’s core rotates. The resonance modes generally become more complex
with higher |n|, where the sign of n determines whether the rotation is clockwise or
anticlockwise. For example, elliptical (n = ±2) and triangular (n = ±3) modes form,
which break rotational symmetry, and thus couple to in-plane fields [256, 257]. As shown
in Fig. 10.1, a general skyrmion excitation can be Fourier-decomposed into individual
excitation modes.

The internal dynamics of skyrmions have potential applications in radio frequency
devices, such as in spin-torque nano-oscillators (STNOs) [259]. In STNOs, a spin-
polarised current applied to a ferromagnetic material results in a self-sustained oscil-
lation, giving a periodic microwave signal. These have been proposed with uniform
magnetisation [260], as well as with magnetic vortex textures [261]. More recently, the
application of skyrmions in these devices for microwave generation and detection, in
place of vortices, has been investigated [55–58]. Skyrmions have the advantage over
vortices in that they are localised objects, so more than one can be used per STNO, as
well as a lower current density required to induce the oscillations.

Skyrmion resonance modes have been studied using a variety of experimental and
theoretical techniques, though the number of experimental studies on this topic remains
much lower than the number of theoretical studies at the time of writing this Thesis. This
is due to several challenges, such as high damping and inhomogeneities in experimental
systems [247]. Resonances of skyrmion lattices were first studied numerically by
Mochizuki [256] in 2012, where a breathing mode and two rotational modes (clockwise

74



10.2. Basic Principles of Frequency Multiplication

and anticlockwise) were identified. This was followed by an experimental study by Onose
et al. [257], in which the breathing and rotation modes of a skyrmion crystal in Cu2OSeO3

were investigated using the microwave response of the system. Other experimental
studies have included employing microwave transmittance spectroscopy [262] and an
all-electrical broadband spectroscopy technique [263].

Various theoretical methods have been applied in the study of skyrmion eigenmodes.
In many such studies, the LLG equation (4.19) is linearised about a stable equilibrium
configuration, recasting it in the frequency domain as an eigenvalue problem [264–268]1.
Some studies investigate the internal dynamics of skyrmions by assuming their structure
to be approximated by a closed, thin domain wall string [268, 270–272]. The method that
we use in this Chapter to investigate eigenmodes of magnetic skyrmions is the simulation
of skyrmion textures to which time-dependent magnetic fields are applied [256, 267, 273,
274], the resulting dynamics of which are analysed. This can be done via the ringdown
method [275], in which a cardinal sine pulse is applied to the system. If the drive is an
external magnetic field Bext(t), this takes the form Bext(t) = Bmax sinc(2πfct), which
is applied for a time tapp. As the Fourier transform of the cardinal sine function is the
rectangular function, the pulse excites all eigenmodes with a frequency up to the cutoff
frequency fc approximately equally, each with an amplitude of Bf = |Bmax| /2fctapp,
thus allowing the determination of the eigenfrequencies within this frequency range using
a single simulation. The spatially resolved power spectrum Psr can be calculated through

Psr(f) =
1

N

∑
j=x,y,z

N∑
k=1

∣∣∣∣∣
n∑

l=1

∆mj(rk, tl)e
−2πiftl

∣∣∣∣∣
2

, (10.1)

where N is the number of cells in the micromagnetic simulation and n is the number
of times the magnetisation texture is sampled. This is a Fourier analysis on the time-
dependent part of the magnetisation vector field, ∆m(rk, tl) = m(rk, tl) − m0(rk),
where m0(rk) is the static texture in the absence of Bext(t). An example of this is
shown in Fig. 10.4(b), where the power spectrum obtained using this method is plotted
as a function of frequency.

10.2. Basic Principles of Frequency Multiplication

In frequency multiplication, a periodic signal of frequency ω interacts with a nonlinear
system, resulting in the outgoing signal having a component with a frequency that
is an integer multiple of ω. A typical example of this is in nonlinear optics, where
an electromagnetic wave interacts with a material which has a nonlinear response,
producing radiation with double (or, more generally, an integer multiple of) the incident
frequency [276]. To elucidate this, we can consider a system whose response y(t)
to a signal x(t) has a linear response, with an additional, small quadratic response,
y = ax− bx2, where b < a. Such a response is illustrated in the graph of y as a function
of x in Fig. 10.2, where the linear part is shown in green. If x(t) = x0 cos(ωt) is a

1This method is implemented in some micromagnetic codes, such as the finite-element package
FinMag [269].

75



Chapter 10. Internal Modes of Skyrmions in Chiral Magnets

−x0 x0 x

y

−x0 x0 x

t

t

y

t

y(1)

t

y(2) +

Figure 10.2.: Sketch of the frequency doubling of a signal by a nonlinear system with a
quadratic response. If a signal with frequency ω is fed into the system, the
nonlinearity results in an output signal composed of a linear combination
of a signal with the input frequency and a frequency-doubled signal.

sinusoidal signal, the response has the form

y = ax0 cos(ωt)− bx20 cos
2(ωt)

= ax0 cos(ωt)−
bx20
2

[1 + cos(2ωt)]. (10.2)

This yields an output, shown in the top-right of Fig. 10.2, to an input shown in
the bottom-left, that deviates from the linear sinusoidal response shown in green.
As illustrated in the bottom-right of the figure, this can be decomposed into a
first-order term y(1)(t) = ax0 cos(ωt) and a second-order, frequency-doubled term
y(2)(t) = −bx20 cos(2ωt)/2 (and a constant term y(0) = −bx20/2). We note that this
quadratic case is a simple illustrative example and that nonlinear systems are typically
much more complicated, with many higher order modes, resulting in responses with
frequencies of higher integer multiples of the input frequency. Frequency multiplication
has a wide range of applications, including in communications systems [277, 278] and
medical imaging [279].

In this Chapter, we consider the frequency multiplication of magnons using skyrmions.
The magnon spectrum is modified in the presence of a skyrmion, which represents a
confining potential, supporting localised modes below the anisotropy gap [265]. Magnons
can be created through parametric pumping, which is the periodic variation of a
parameter of a system to inject energy. An everyday example of parametric pumping is
a child on a playground swing where the child sustains the oscillations by periodically
folding and extending their legs. This varies the moment of inertia of the system,
leading to a self-sustained oscillation. In a magnetic system, parallel parametric pumping
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Input perturbation Excited magnon

Figure 10.3.: Illustration of frequency multiplication using a magnetic skyrmion texture.
Eigenmodes with eigenfrequency fn can be excited with an input signal at
a unit fraction of the eigenfrequency fn/m, where m is an integer, resulting
in an output signal at the eigenfrequency, thus multiplying the frequency
of the input signal. Figure adapted from our publication Ref. [258].

(parallel referring to the applied field being parallel to the ferromagnetic background)
using an applied oscillating magnetic field is a common method of producing spin wave
excitations [280, 281]. We consider parallel parametric pumping of magnetic skyrmion
textures to create skyrmion-magnon bound states from which magnons are produced
with integer multiples of the applied magnetic field frequency. Magnons impinging upon
a skyrmion can excite the skyrmion’s eigenmodes, leading to skyrmion-magnon bound
states [266, 282]. From this, due to the nonlinearity created by the skyrmion, it is possible
to excite magnon-skyrmion bound states with frequencies that are integer multiples of
the frequency of an applied oscillating magnetic field, such that the skyrmion acts as a
frequency multiplier, as illustrated in Fig. 10.3. The results of this study are published
in Ref. [258].

10.3. Numerical Study of Skyrmion Frequency Multiplication

To model magnetic skyrmions as frequency multipliers, we consider a chiral magnetic
thin film with perpendicular magnetic anisotropy (PMA), such that the energy functional
is

U [m(r)] =

∫
d3r

[
A(∇m)2 −Dm · [(ẑ ×∇)×m] +K(1−m2

z)
]
, (10.3)

where A is the exchange interaction strength, D is the Dzyaloshinskii-Moriya interaction
strength, and K is the uniaxial anisotropy strength. The film’s normal is along the
z-direction. We restrict the DMI strength D < Dc = 4

√
AK/π, such that the

ferromagnetic state is the ground state [196]. We consider an additional Zeeman term

UZ = −Ms

∫
d3rBext(t) ·m, (10.4)
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where Bext(t) is the time-varying applied magnetic field2. In our investigation, we use
A = 1.6×10−11 Jm−1, K = 5.1×105 Jm−3, andMs = 1.1×106Am−1, which correspond
to Pt/Co/AlOx samples [196, 268]. Unless otherwise stated, the Gilbert damping
parameter α = 10−3. Dipole-dipole interactions are approximated by a modification
to the PMA strength K = Ku − µ0M

2
s /2 [134] where Ku is the uniaxial anisotropy

strength of the material.

For the skyrmions in this system stabilised by PMA in the absence of an externally
applied magnetic field, most modes exist only below the magnon gap for D close to
Dc [268, 271]. We thus perform ringdown simulations on the skyrmion for a range of
values of D, shown in Fig. 10.4. Figure 10.4(a) shows the frequency of the various
excitation modes with quantised angular momenta 0 ≤ n ≤ 3 as a function of the
DMI strength. An example frequency spectrum from which the mode frequencies were
extracted is shown for D = 0.86Dc in Fig. 10.4(b). We note that an out-of-plane external
magnetic field only excites the radially symmetric breathing mode, while an in-plane field
can excite all modes with an eigenvalue below the cutoff frequency, and thus an in-plane
field is used. This takes the form Bext(t) = Bmax sinc(2πft)x̂, where Bmax = 0.05T.
As we experienced some difficulty in exciting all of the modes with a single frequency
f , a train of pulses was used, with frequencies 25GHz, 50GHz, 100GHz, 200GHz, and
500GHz, with each pulse applied for a time window of 2 ns and its peak at the centre
of each window. Following the application of the pulse train, the texture was allowed to
evolve for 20 ns to allow oscillations not corresponding to the eigenmodes to dampen out,
which decay much more quickly than eigenmodes, to dampen out, before sampling the
texture for a further 10 ns at 0.01 ns intervals. The power spectra, an example of which
is shown in Fig. 10.4(b), were obtained from the magnetic texture using (10.1), and the
eigenfrequencies were extracted from this using the find_peaks function of SciPy [283].

We now turn our attention to excitations induced using pure sinusoidal pulses,
Bext(t) = Bmax sin(2πft)x̂. Shown in the black curve of Fig. 10.5 is the frequency
response of a skyrmion to a sinusoidal pulse at half the breathing mode (n = 0)
eigenfrequency: f = f0/2 = 3.6GHz, and the frequency response to a pulse with
a frequency slightly off this frequency, f = 3.3GHz, is shown in the grey curve. In
contrast to the case of applying a cardinal sine pulse where all eigenmodes are excited
approximately equally, a sine pulse predominantly excites the mode at the frequency of
the pulse, as well as integer multiples thereof (harmonics). The excitation of modes
at frequencies that are integer multiples of that of the applied pulse is due to the
nonlinearity of the potential created by the skyrmion. For f = f0/2, the frequency-
doubled harmonic coincides with the breathing mode eigenfrequency, resulting in a
resonance at frequency f0 (the vertical red line). The amplitude of the harmonic
is greater than the response at the applied frequency itself, which we explore in the
following.

We now focus on the breathing (n = 0) and elliptical (n = 2) modes. These have eigenfre-
quencies f0 and f2 respectively. Shown in Fig. 10.6 are the time-averaged displacements
of the skyrmion radii r0,2(t) from their equilibrium radii R0, r0,2 = ⟨r0,2(t)− R0⟩t, as a
function of the frequency of the sine pulse f . As the modes are not symmetric in general

2In our publication Ref. [258], the frequencies reported in discussions of numerical results are out by
a factor of 2π. For example, where a frequency ω0 is applied, the field in the MuMax3 script is
∼ cos(2πω0t) instead of cos(ω0t). In this Thesis, we use f to denote frequencies in both the text and
the figures, e.g. if a field of frequency f is applied, it has the time dependence ∼ cos(2πft).
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Figure 10.4.: Frequency analysis of the eigenmodes of a Néel skyrmion. (a) Frequencies
of the various eigenmodes with quantised angular momenta 0 ≤ n ≤ 3 as a
function of the DMI strength. (b) Detailed analysis of the power spectrum
for a fixed DMI strength of D/Dc = 0.86 obtained using (10.1). Figure
adapted from our publication Ref. [258].
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Figure 10.5.: Example of the general principles of the excitation of a magnetic texture
by frequency multiplication. The excitation of a skyrmion texture by
oscillating magnetic fields with an amplitude of 5mT is shown for an
applied frequency fapp at half the breathing mode frequency f0 (in black)
and at slightly less than half of f0 in grey. For the case that fapp = f0/2,
there is a resonance and the corresponding multiple has a higher amplitude.
Figure adapted from our publication Ref. [258].
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a) b)

Figure 10.6.: Amplitude of the (a) breathing and (b) elliptical modes (with frequencies
f0 and f2 respectively) as a function of the frequency of the in-plane
applied field with amplitude 50mT. We use a Gilbert damping constant
of α = 10−3. Fractions of the eigenfrequencies can still strongly excite the
corresponding eigenmodes. Figure adapted from our publication Ref. [258].

(the exception being the n = 0 breathing mode), the average is taken after the Fourier
transform is calculated. The skyrmion radii are calculated using the find_contours

function of scikit-image [284] to calculate contours of constant mz = 0.5. The
skyrmion’s centroid is extracted by calculating the median of the contour and the radii
are calculated by taking the distance from points on the contour to the centroid. As
before, Bmax = 50mT. The DMI strength is chosen for each simulation for the values of
the D in Fig. 10.4 for which the magnon amplitudes were the highest, which were 0.77Dc

for the breathing mode and 0.86Dc for the elliptical mode. An interesting result is that
resonance is not only observed when the applied frequency is equal to the eigenfrequency
f0 and f2 of the breathing and elliptical mode respectively but also at unit fractions
f = f0,2/n, n ∈ Z, of the eigenfrequencies. We also observed this behaviour for the
n = 3 triangular mode.

As the Gilbert damping is viscous, such that the rate of energy dissipation is proportional
to ∂tm, perturbations of higher frequency are more strongly damped than those of lower
frequency. This suggests that the frequency multiplication uncovered in this work can
provide a method to excite skyrmion eigenmodes more efficiently than by simply applying
the perturbing field at the eigenfrequency. A further advantage is that lower frequencies
are more experimentally accessible. To gain a better understanding of the conditions for
which the excitation of the eigenmodes using a perturbing field at unit fractions of the
eigenfrequency is more efficient than at the eigenfrequency itself, we plot the breathing
mode magnon amplitude as a function of the amplitude of a sinusoidal out-of-plane
magnetic field pulse in Fig. 10.7. Shown in red are the amplitudes of the breathing
modes, while the points in black correspond to oscillations at the forcing frequency.
Shown on the right-hand side are the power spectra for Bmax = 0.01T. Also shown
are lines with slopes of 2 and 3 for applied frequencies at f0/2 and f0/3 respectively,
demonstrating that the amplitude of the breathing mode grows with a power of 2 for
f = f0/2 and 3 for f = f0/3, a phenomenon that will be explored in more detail
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in Section 10.4. The amplitude of magnons at the forcing frequency grows linearly
with Bmax. An important feature to note is that, above certain values of Bmax, the
breathing eigenmode is more strongly excited by applied fields at unit fractions of the
eigenfrequency than the forced perturbation m̃. As Bmax increases further, the linearity
breaks down, as higher-order magnon scattering occurs. Also shown in Fig. 10.7 is
the dependence of the magnon amplitudes of the eigenmodes and those at the forcing
frequency for applied frequencies of f0/2 and f0/3 as a function of the damping parameter
α. This shows that the forced perturbation amplitude is independent of damping, while
r0 decreases with damping. Thus, the presence of Gilbert damping causes a transfer
of energy from the forced perturbation to the resonance mode, resulting in a decrease
in the resonance mode. Therefore, higher damping reduces the efficiency of frequency
multiplication.

10.4. Generalisation to Arbitrary Magnetic Structures

The principles explored in the previous Section for the specific case of magnetic skyrmions
are generalisable to other topological magnetic textures such as magnetic vortices.
Considering a field in a nonlinear system ϕ(r, t) with small perturbations ϕ̃ such that
ϕ̃≪ ϕ, we can Taylor-expand about the ground state ϕ0(r),

∂ϕ̃

∂t
= L1(ϕ0)ϕ̃+ L2(ϕ0)ϕ̃

2 + · · ·+ Lp(ϕ0)ϕ̃
p + . . . , (10.5)

where the Lk are the Taylor expansion coefficients. L1ϕ̃ is a linear approximation for
the generally nonlinear system, which determines the eigenstates with eigenfrequencies
ωn, while the terms Lkϕ̃

k represent interactions between perturbations. To see how
the terms k > 1 lead to frequency multiplication, we can consider a perturbation with
a fraction of an eigenfrequency ϕ̃(t) ≈ ϕωn/2 cos(ωnt/2). The quadratic term is then

ϕ̃(t)2 ≈ ϕ̃2ωn/2
[1 + cos(ωnt)]/2, i.e. a frequency-doubled term with an amplitude reduced

by a factor of 2. This principle can be generalised to higher order terms, such that
perturbations applied with unit fractions of eigenfrequencies ωn excite the corresponding
eigenmodes, where the amplitude of the eigenmode grows with the mth power of the
driving amplitude with frequency ωn/m. We also note that (10.5) is independent of the
amplitude of the perturbation.

We generalise the results of the previous section to an arbitrary magnetic texture
m(r, t) = m0(r) + δm(r, r), where |δm| ≪ 1 and δm ⊥ m0, where m0 is the relaxed
texture and δm is a perturbation behaving as an underdamped travelling wave

δm = ϕ1(ρ, ψ, t)[m0 × n̂] + ϕ2(ρ, ψ, t)[(m0 × n̂)×m0], (10.6)

where ρ and ψ are the radial and angular polar coordinates, and n̂ is the direction of
the field-polarised background. We consider a Fourier expansion of the perturbation in
terms of eigenmodes n of the topological object of the form

ϕi(r, ψ, t) =
∑
n

ϕin(r)ϕn(r, nψ − ωnt). (10.7)

In this general framework, a perturbation can excite any mode with nonvanishing ϕin(r)
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slope 2

slope 3

a)

b)

Figure 10.7.: Amplitudes of both the breathing mode r0 and the forced perturbation m̃
as a function of (a) amplitude of the applied magnetic field with α = 10−3

and (b) damping parameter for an AC magnetic field with amplitude 3mT,
excited with an out-of-plane oscillating magnetic field. In (a), straight
lines with a slope of 2 and 3 indicate growth with a power of 2 and 3 for
the second and third harmonic generation. Above a certain amplitude of
the applied field, the eigenmode is more excited than the mode with the
same frequency as the perturbation. Figure adapted from our publication
Ref. [258].
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10.4. Generalisation to Arbitrary Magnetic Structures

via frequency multiplication, where the principle that higher driving forces increase the
amplitudes ϕin also applies generally.

In summary, we have demonstrated that, using the nonlinear properties of topological
solitons in magnetic materials, it is possible to efficiently excite eigenmodes by applying
oscillating magnetic fields with frequencies of unit fractions of the mode eigenfrequencies.
We have demonstrated this numerically using the example of magnetic skyrmions, but
our theoretical analysis in the limit of small perturbations without the assumption of a
specific microscopic structure reveals that this can be applied to more general structures.
This has potential applications in magnonics where the existence of such magnetic
structures could be used for in materia frequency multiplication, as well as in other
areas such as unconventional computing [285].
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Chapter 11
Electric Field-Driven Dynamics of
Skyrmions in Frustrated Magnets

Much of the research focus into magnetic skyrmions has been on the case where they
are stabilised by competing symmetric exchange and Dzyaloshinskii-Moriya interactions,
discussed in Section 5.1. As discussed in Section 5.4, however, skyrmions can also be
stabilised by competing symmetric exchange interactions of different orders, in so-called
frustrated magnets. In contrast to chiral magnets, in frustrated magnets, no specific
helicity of the skyrmion is energetically favoured, such that it is a zero, or Goldstone,
mode1. This means that the helicity can be more easily rotated than in chiral magnets,
a phenomenon which has been investigated in various theoretical studies. For example,
it has been found that applying a perpendicular current to a skyrmion in a thin film of
a frustrated magnetic material leads to a rotation of the skyrmion’s helicity [119, 203].
In this Chapter, we consider the case of a static applied magnetic field perpendicular to
the thin film (which serves to stabilise the ferromagnetic background) and an oscillating
applied electric field. Furthermore, we propose a topological interpretation in (2 + 1)D
spacetime in terms of the Hopf index, creating a ‘spacetime magnetic hopfion’. The
results of this Chapter are reported in Ref. [286].

11.1. Dynamics of Skyrmions in Frustrated Magnets

In this Chapter, we model skyrmions in a frustrated magnet with the energy functional
(5.13), with the additional application of an externally applied electric field. As discussed
in Section 4.1, an externally applied electric field can couple with the polarisation that is
induced as a result of non-collinear magnetic textures (such as skyrmions) in frustrated
magnets. We can model an external electric field Eext applied to a frustrated magnet
with the energy functional

U [m(r)] =

∫
d3r

[
−I1

2
(∇m)2 +

I2
2
(∇2m)2 −MsBext ·m−Eext · P

]
. (11.1)

1We assume that the dipole-dipole interactions (which weakly favour Bloch-type skyrmions) lead to a
renormalisation of the other parameters and that the difference between the renormalisation and the
true magnetostatics is small.
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Characteristic Definition SI Unit

Length
√
I2/I1 m

Time MsI2/γI
2
1 s

Energy
√
I1I2 J

External Magnetic Field I21/MsI2 T

External Electric Field (γ/M2
s )
√
I71/I

3
2 Vm−1

Electric Polarisation (M2
s /γ)

√
I2/I31 Cm−2

Table 11.1.: Summary of natural units used in our study of the dynamics of skyrmions
in frustrated magnets.

To reduce the number of free parameters of the theory, it is convenient to rescale our
units by the quantities in Table 11.1 to work with dimensionless quantities. The energy
functional in terms of the rescaled quantities is

Ũ [m(r̃)] =

∫
d3r̃

[
−1

2
(∇̃m)2 +

1

2
(∇̃2m)2 − B̃ext ·m− Ẽext · P̃

]
, (11.2)

which has just the two dimensionless free parameters B̃ext and Ẽext. For the remainder
of this Chapter, we work in dimensionless units and drop the tildes for convenience. As
discussed in Section 4.1, the electric field-polarisation coupling term is of the form of
a DMI that is tunable by manipulating the applied electric field. In this Chapter, we
consider a skyrmion in a frustrated magnet subject to a sinusoidal electric field2 with
a period T applied perpendicular to the thin film, given by Eext = E0 cos(ωt)ẑ, where
ω = 2π/T and E0 is its amplitude.

For the investigation of the behaviour of skyrmions in a frustrated magnet in a broad
parameter space, the numerical solution of the LLG equation (4.19) in the micromagnetic
model becomes impractical. We therefore make use of collective coordinate modelling,
discussed in Section 4.3. Using this, we reduce our problem from an infinite number
of degrees of freedom to just two degrees of freedom: the skyrmion’s radius R, i.e. the
radial distance between the skyrmion’s centre where mz = −1 and the contour on which
mz = 0, and its helicity η. As such, we assume that the skyrmion can be approximated as
being perfectly circular and that its magnetisation m = (cosΦ sinΘ, sinΦ sinΘ, cosΘ)
can be described by the ansatz [287, 288]

Θ = 2 arctan

(
sinh[R(t)/w]

sinh(ρ/w)

)
, (11.3a)

Φ = ψ + η(t), (11.3b)

where ρ =
√
x2 + y2 and ψ = arctan(y/x) are the radial and angular polar coordinates

respectively, with the skyrmion’s mz = −1 at x = y = 0. w is the domain wall width,
which we take to be 1.4 throughout this work. To determine this value, we relaxed a
skyrmion in MuMax3 and fitted the resulting profile of mz to (11.3a). We also confirmed
that the width which minimised the energy for a given radius did not vary significantly
for the variations of radii seen in our work.

2Although Maxwell’s equations state that a time-varying electric field induces a magnetic field, this
induced field is so small in comparison with the other energy terms at play that it need not be
considered.
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The equation of the collective coordinates R and η become, when substituted into (4.24),[
Ṙ
η̇

]
=

1

G2
Rη + α2ΓRRΓηη

[
αΓηηFR +GRηFη

−GRηFR + αΓRRFη

]
, (11.4)

where, in our ansatz (11.3), the gyrotropic and dissipative tensors are

GRη = 2πd

∫ ∞

0
dρρ sinΘ

∂Θ

∂R
, (11.5a)

ΓRR = 2πd

∫ ∞

0
dρρ

(
∂Θ

∂R

)2

, (11.5b)

Γηη = 2πd

∫ ∞

0
dρρ sin2Θ. (11.5c)

Here, d is the thickness of the thin film (the profile is assumed to be uniform along the
axis normal to the film) and the factor of 2π results from the integration over the polar
coordinate ψ. The generalised forces are

FR = 2πdE0 cos(ωt) cos η

∫ ∞

0

[
cos(2Θ)

∂Θ

∂R
+ ρ

∂2Θ

∂R∂ρ

]
dρ

− ∂Uex

∂R
− 2πdBext

∫ ∞

0
ρ sinΘ

∂Θ

∂R
dρ, (11.6a)

Fη = −2πdE0 cos(ωt) sin η

∫ ∞

0

[
cosΘ sinΘ + ρ

∂Θ

∂ρ

]
dρ, (11.6b)

where Uex = 2πd
∫
dρ [−1

2(∇m)2+ 1
2(∇

2m)2] is the exchange interaction part of (11.2).

The energy landscape (11.2) with zero applied electric field is shown as a function
of the collective coordinates R and η, transformed to polar coordinates for ease of
interpretation, in Fig. 11.1(a). Here, the Zeeman energy of the background is subtracted,
and the resulting energy is represented by ∆U . The U(1) symmetry in η reflects the
fact that it is a zero mode. The unphysical ‘horn’ in the energy landscape for small
R results from the quartic term within the skyrmion profile approximation (11.3a) for
fixed w. The assumption of a fixed w is no longer valid for R → 0. The divergence
in energy for large values of R results from the increase in Zeeman energy. This gives
a radius R∗ that minimises the total energy at the ‘trough’ in the energy landscape.
The effect of the applied electric field is to tilt the energy landscape, breaking the U(1)
symmetry of the helicity, illustrated in Fig. 11.1(b). When the electric field is along
the +z-direction, the Zeeman energy term proportional to cos η is minimised for η = π,
and η = 0 minimises the energy when the electric field is along the −z-direction. As
the field oscillates, the energy landscape rocks back and forth about the R cos η = 0
line, injecting energy into the system. At certain values of the amplitude E0 and
angular frequency ω of the electric field, after an initial transient, the skyrmion’s helicity
rotates at an angular frequency equal to that of the applied electric field, an example
of synchronisation [289]. Snapshots of a micromagnetic simulation illustrating this over
a single period of oscillation are shown in Fig. 11.2(a). The corresponding evolution
of the energy landscape and the collective coordinates (which agree closely with the
micromagnetics) is shown in Fig. 11.2(b). We note that from the Thiele equations (11.4),
it is not possible with our model to induce a helicity rotation in the absence of an electric
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R cos η
R

sin
η

∆
U

E = 0

R cos η

R
sin

η
∆
U

E > 0a) b)

Figure 11.1.: The energy landscape (11.2) in the (a) absence and (b) presence of an
electric field along the +z-direction, as a function of the collective coordin-
ate skyrmion radius R and helicity η. The electric field breaks the U(1)
symmetry of the energy functional with respect to helicity η.

field. For the helicity rotation to be sustained, sufficient energy must be injected such
that it compensates energy losses due to damping and the system has sufficient energy
to pass over the saddle point in the energy landscape. An analogous discussion of this in
the context of the U(1) symmetry breaking induced by DMI instead of an applied electric
field can be found in Ref. [272]. An oscillating magnetic field, for example, results in
a back-and-forth oscillation of the skyrmion’s helicity, with no overall evolution in one
direction. However, we remark that we were able to observe helicity rotations with an
oscillating magnetic field in the presence of a static, U(1) symmetry-breaking applied
electric field, and speculate that it would also be possible in the presence of DMI instead
of an electric field.

An interesting limit of (11.4) is the absence of damping and electric field, the phase
portrait of which is shown in Fig. 11.3. In this limit, Ṙ = 0, i.e. the skyrmion’s radius
remains constant. This is because energy is neither absorbed nor dissipated, and energy
only depends on the skyrmion’s radius in the absence of an applied electric field within
our collective coordinate model and not its helicity. The helicity η, however, can still
change, and its equation of motion becomes

η̇ = Bext +
∂RU4 − ∂RU2

GRη
, (11.7)

where U2 = πd
∫
dρ ρ(∇m)2 and U4 = πd

∫
dρ ρ(∇2m)2 are the quadratic and quartic

order exchange energies respectively. This implies that, for the minimal-energy case that
Bext = G−1

Rη(∂RU2 − ∂RU4) (i.e. when FR = 0), the helicity does not rotate. η̇ varies
linearly with Bext, rotating clockwise for low Bext and anticlockwise for higher Bext,
for a given skyrmion radius. We confirmed this linear relationship using micromagnetic
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Figure 11.2.: Rotation of a skyrmion’s helicity over one period of the applied oscillating
electric field. (a) Micromagnetic simulation of the magnetisation texture
over one period of helicity rotation. (b) Energy landscape during the
evolution, with the Zeeman background subtracted. The green dot shows
the time evolution of the collective coordinates. The direction of the helicity
rotation is shown by the grey arrow and is determined by the amplitude
and frequency of the applied electric field. Here, the parameters used are
E0 = 0.20, ω = 1.18, and t0 is deep in the steady state, with η(t0) = 0
(mod 2π). Figure taken from our publication Ref. [286].

simulations. Alternatively, instead of varying Bext, we can consider fixing it and instead
varying the skyrmion’s radius R. Then, in Fig. 11.3, we see that the rotation sense
changes when crossing the radius of minimum energy R∗. This can also be seen by
expanding (11.4) in the limit of small damping α,

Ṙ = c1α+ E0 cos(ωt) (c2 + c3α) +O(α2), (11.8a)

η̇ = η̇0(R) + E0 cos(ωt) (c4 + c5α) +O(α2), (11.8b)

where c1, . . . , c5 are generally functions of the collective coordinates. η̇0 is the limit of
the helicity’s rotation speed in the limit of E0 = α = 0. From these equations, it can
be seen that, in this limit, Ṙ = 0, while η̇ = η̇0(R) is constant, and swaps sign as at
R = R∗, the value at which it is zero. The dynamics in the presence of an electric field
for different values of its amplitude and frequency are explored in the following Section.

11.2. Electric Field Amplitude-Frequency Phase Diagram

In the rescaled model introduced in the previous Section, the free parameters are the
externally applied electric field Eext, specifically its amplitude E0 and angular frequency
ω, the externally applied magnetic field Bext, and the Gilbert damping parameter α. As
previously discussed, we require an externally applied magnetic field with a z-component

89



Chapter 11. Electric Field-Driven Dynamics of Skyrmions in Frustrated Magnets

−2 −1 0 1 2

R cos η

−2

−1

0

1

2

R
si

n
η

R∗

Monotonic Evolution

Nonmonotonic Evolution

Figure 11.3.: Plot of the vector field (11.4) in the absence of damping and electric field,
transformed to polar coordinates. The skyrmion radius R∗ for which energy
is minimised with zero applied electric field is shown as a red dashed circle,
as well as plots of the collective coordinate evolution, both for the case of
monotonic evolution where R remains lower than R∗, and where R evolves
aboveR∗ during the evolution, causing a temporary reversal in the direction
of the helicity evolution.

of magnitude greater than 1/4 to stabilise the ferromagnetic background. The skyrmion
in the frustrated system exhibits interesting dynamics, the qualitative behaviour of which
depends on the amplitude and frequency of the applied oscillating electric field. We
choose to fix the magnetic field Bext = ẑ. We set the damping parameter α = 0.01. To
investigate the different regimes of the behaviour of the skyrmion, we integrate (11.4)
for 0 ≤ E0 ≤ 1.5 with step size 0.05, and 0 ≤ ω ≤ 4, with step size 0.02. For values
of E0 ≳ 1.5, we found, using micromagnetics, that the background became destabilised,
with the formation of spin spiral textures. The resulting phase diagram from the time
integration of (11.4) with varying values of E0 and ω are shown in Fig. 11.4. The time
integration of the collective coordinates for each point is performed up to a dimensionless
time of 1000, with an adaptive time step, using the Radau IIA integrator supplied by
SciPy [283]. The SageMath code used for the numerical integration of the equations of
motion of the collective coordinates (11.4) is given in Appendix F. To avoid computing
the integrals GRη, ΓRR, Γηη, FR, and Fη, we fit functions of the integrals in the range
0 ≤ R ≤ 10. We verified that the error due to this fitting was negligible, in particular,
as long as R ≲ 50. To obtain the number of helicity rotations per electric field cycle,
we summed up the change in helicity during the evolution and averaged them over all
periods for 500 ≤ t ≤ 1000, where we start at 500 to avoid the initial transient. The
initial conditions are the values of R and η that minimise the total energy at t = 0.
However, we confirmed that, for different starting conditions, the general long-term
behaviour was the same. In order to numerically categorise the points, we classified
an anticlockwise (clockwise) rotation as the average helicity rotation being greater than
0.9 · 2π (less than 0.9 · 2π). In general, however, the points were much closer to 2π than
this.
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We use MuMax3 to validate our collective coordinate findings with self-written extensions
for the higher-order exchange and electric field-polarisation coupling terms in the energy
functional. These MuMax3 extensions are discussed in Appendix C. We do not include
the demagnetising field in the simulations as we consider a minimal model, and its
effects are also not considered in the collective coordinate modelling. We did, however,
run simulations with the inclusion of the demagnetising field, and found that the same
qualitative behaviour was observed for values of Ms that would be found in typical
materials. The system considered is a thin film with cubic discretisation cells of edge
length ∆ = 0.3

√
I2/I1. N = 128 cells are used in the x- and y-directions, with a

single cell along z. We set the damping α = 1 over an area bordering the edges
extending 5 simulation cells into the sample on each edge to suppress the reflection of the
spin waves that are emitted during the skyrmion’s evolution. The explicit parameters
chosen are α = 0.01 as with the collective coordinate modelling (with exception of the
aforementioned boundaries), I1 = 10−12 Jm−1, I2 = 10−29 Jm, and Ms = 106Am−1.
For these values, the applied dimensionless magnetic field of 1 would correspond to
100mT, and a dimensionless length of 10 would correspond to 31.6 nm. We note,
however, that this particular choice of I1, I2, andMs only represents order-of-magnitude
values for such systems, and that while the various scales such as length and time will
change if the micromagnetic parameters are varied, the physics will remain the same
regardless of what is chosen.

We noted in Section 5.4 that the length scales associated with magnetisation textures in
frustrated magnets are around an order of magnitude lower than those in typical chiral
magnetic systems. Although we work in dimensionless units for generality rather than
considering parameters from a specific material, we acknowledge that this could be a
limitation when applying the results of the phase diagram Fig. 11.4(a) to experimental
systems. Nevertheless, the micromagnetic functional captures the qualitative details of
the system such as the helicity being a Goldstone mode, and the length scales are still
an order of magnitude above the typical lattice constant, so we assume that our results
still lay a solid foundation on which experimental studies could be based.

To compare the results from the micromagnetic modelling with those from collective
coordinate modelling, we calculate the skyrmion’s radius for each time step of the
simulation by extracting the contour on which mz = 0 using the scikit-image

library [284]. The centroid of the skyrmion is calculated using the median of the
contour’s x- and y-positions, and the radii are calculated by calculating the mean of the
displacements from the centre. The skyrmion’s helicity during the evolution is calculated
by extracting the average helicity of the points on the mz = 0 contour.

The results of the integration of the Thiele equations (11.4) for various values of electric
field amplitude E0 and frequency ω are summarised in Fig. 11.4(a). Shown in green are
the points where the skyrmion’s helicity rotates anticlockwise with the angular frequency
synchronised with the driving frequency ω of the electric field. Dark green signifies points
where the helicity’s rotation is monotonic, while light green signifies points where the
rotation is not monotonic. The same applies to the points shown in purple and pink,
with monotonic and nonmonotonic clockwise instead of anticlockwise rotation. In white
are points for which no such rotations are achieved. The Kittel frequency of the system
ωres = 1 in the absence of dipolar interactions is marked as a dashed vertical line. The
insets in Fig. 11.4(a) show the preimage of the associated spacetime hopfions, which will
be discussed in Section 11.4.
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Figure 11.4.: (a) Phase diagram constructed by analysing the long-term solutions of the
Thiele equations (11.4) with α = 0.01, for different values of the amplitude
E0 and frequency ω of the oscillating electric field. The regions with
nonzero spacetime Hopf index are shown in pink and green, corresponding
to a clockwise (H = +1) and anticlockwise (H = −1) rotation of
the helicity respectively. (b), (c) Example trajectories of the collective
coordinate evolution for monotonic anticlockwise and clockwise helicity
evolution, with parameters E0 = 0.25, ω = 0.72 and E0 = 0.20, ω = 1.18
respectively. The trajectories are elliptical due to the breathing of the
radius, shown in (d). When the radius is smaller than R∗, the helicity
increases (rotates anticlockwise), and vice versa. Figure taken from our
publication Ref. [286].
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The most striking feature of the phase diagram is that it displays two ‘lobes’: one in
which the helicity rotation is exclusively clockwise and another where it is predominantly
anticlockwise. In the rightmost pink and purple lobe, we see that the skyrmion’s helicity
rotates clockwise. Most of the points in this region are at a frequency far from ωres, giving
a favourable energy injection to dissipation ratio for a steady helicity rotation. The
collective coordinate results are also in good agreement with the micromagnetics results
in this region, as exemplified in Figs. 11.4(b) and (c), making this region promising
for experimental investigation. One interesting feature of this is the appearance of a
straight line separating the regions for which there is a monotonic and nonmonotonic
rotation of the helicity. If the evolution is such that R becomes greater than R∗, the
helicity starts to reverse direction, as can be seen in Fig. 11.3. This can be seen in
Fig. 11.5(b), where the maximum radius obtained during the collective coordinate is
approximately R∗, which corresponds to the white, straight line. This straight line can
also be understood through energy considerations. The helicity rotation is induced by
energy injection from an AC electric field, which competes with energy dissipation from
the Gilbert damping. In Fig. 11.5(c), the time-averaged energy ⟨U⟩ with the energy
of the skyrmion in the absence of Eext, U

∗ ≈ 4.05, is shown. The time-periodic steady
state where the helicity rotates happens where ⟨U⟩ ≈ U∗, where the energy injection and
dissipation, on average, cancel out. For the white region of Fig. 11.4 below this lobe, the
amplitude of the electric field is too small to induce a helicity rotation, and the helicity
evolution simply rocks back and forth about its equilibrium value. For values of E0

above this lobe, the dynamics become very complex, and synchronisation of the helicity
with the electric field does not occur. The trajectories of the selected points shown in
Figs. 11.4(b) and (c) have an elliptical shape, which reflects the coupled dynamics of the
collective coordinates, i.e. that the helicity rotations are accompanied by breathing of
the skyrmion.

In the leftmost lobe, concentrated around the resonance frequency, the helicity rotation
is predominantly anticlockwise. The anticlockwise rotation can be phenomenologically
understood by the fact that, for such proximity to resonance, the steady-state radius
remains higher than R∗, resulting in an anticlockwise rotation. It should be noted that,
for some of these points, particularly those with values of ω very close to ωres, such
assignment of a topological index is not strictly true. This is because the radius is often
continuously increasing for the collective coordinate calculations around these points,
meaning that points at time intervals T apart cannot be identified. In the micromagnetic
simulations, instead of the radius diverging, the skyrmion profile approximation (11.3)
breaks down and the skyrmion loses its structural integrity. We note that, had we
chosen another magnitude of Bext, the phase diagram would look very similar, with the
resonance shifted horizontally. We confirmed this by recalculating the phase diagram
with Bext = 2ẑ, shown in Fig. 11.1(d). Within the dark green region of the leftmost
lobe, but further away from ωres, the dynamics are more well-behaved, and the collective
coordinate and micromagnetic models agree well, as shown in Fig. 11.4(b), where the
evolution over a single period for E0 = 0.25 and ω = 0.72 is shown.

At frequencies lower than those of the bulk of the left-hand lobe exist more isolated points
with interesting dynamics. An example of such dynamics is shown in Fig. 11.6(a), with
a looping around the helicity values η = 0, π. These dynamics can be understood in
terms of the energy landscape shown in Fig. 11.6(c), which shows the energy landscape
during the evolution where E > 0 and E < 0, and the future evolution of the trajectory.
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Figure 11.5.: Various phase diagrams further illustrating the dynamics of the skyrmion
in a frustrated magnet subject to an oscillating electric field. (a) Maximum
radius during the evolution in the long-term dynamics. The divergence at
the Kittel frequency can be seen. (b) Difference between the maximum
radius achieved during the evolution and the equilibrium skyrmion radius
R∗ in the absence of an applied electric field. The plotted range ofRmax−R∗

is restricted to [−0.1, 0.1]. (c) Time average of the energy of a driven
skyrmion ⟨U⟩ over one period of the oscillating electric field is shown.
Where ⟨U⟩ = U∗, the energy of the skyrmion for zero electric field, the
energy injected by the driving AC electric field is on averaged balanced by
the Gilbert damping dissipation. (d) Phase diagram as in Fig. 11.4 with
double the applied background magnetic field. Figure adapted from our
publication Ref. [286].
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11.2. Electric Field Amplitude-Frequency Phase Diagram
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Figure 11.6.: More complicated evolution of the collective coordinates at a low frequency
ω of the applied AC electric field. (a) Trajectory for E0 = 1.00, ω = 0.30
calculated using both collective coordinate and micromagnetic modelling.
(b) Preimages of mx = 1 and mx = −1, with the vertical axis being
time, over one period of the electric field, from the collective coordinate
calculations. (c) Dynamics can be interpreted as the collective coordinate
trajectory (green dot and line) orbiting the energy minimum basins.

The collective coordinates orbit the minimum energy basins during the evolution, giving
rise to the shape of the trajectory. Also seen in this region are isolated points in which
helicity rotates clockwise, in contrast to the rest of the ‘lobe’, where the rotation is
anticlockwise. This is also seen in micromagnetic simulations, however, not at the same
points. In this region, the behaviour is very sensitive to small perturbations, resulting
in the evolution sometimes crossing the R = R∗ line ‘by chance’, and other times not.
We emphasise that, because such dynamics are also observed in some micromagnetic
simulations, these isolated points reflect the high sensitivity to small changes in this
region of the phase diagram.
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Figure 11.7.: Time evolution of a skyrmion texture during one period of oscillation of
the externally applied magnetic field at a finite temperature θ = 20K.

11.3. Finite-Temperature Simulations

To ensure that the dynamics of the skyrmion in a frustrated magnet that we have
uncovered are robust at finite temperatures, we ran simulations for temperatures θ ̸= 0K.
The inclusion of finite temperatures in micromagnetic simulations has been discussed in
Section 4.2, which we make use of here. The time evolution of the skyrmion texture over
one period of the applied oscillating electric field for θ = 20K is shown in Fig. 11.7 for
an electric field amplitude of E0 = 0.20 and angular frequency of ω = 1.18. Although
noise is visible, the skyrmion’s helicity still rotates. The collective coordinates extracted
from these simulations are shown for a range of temperatures in Fig. 11.8, where the
skyrmion’s breathing and helicity rotation can still be seen up to θ = 20K. Some of
the noise at higher temperatures, especially for the helicity, comes from limitations of
the code used to extract the collective coordinates, rather than being an artefact of
the simulations. Despite being unable to observe helicity rotations in the collective
coordinates extracted for higher temperatures, we still observed a helicity rotation for
temperatures as high as 100K in the simulations.
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Figure 11.8.: Evolution of the collective coordinates R and η over two periods of
oscillation of the applied electric field of amplitude E0 = 0.20 and angular
frequency ω = 1.18 for various temperatures. Apart from added noise, the
overall behaviour of breathing and a helicity rotation is still observed.

11.4. Topological Interpretation as Spacetime Magnetic
Hopfions

Magnetic hopfions, as introduced in Chapter 3, are defined in terms of the mapping
S3 → S2. In much of the literature on magnetic hopfions, however, they are discussed
as skyrmion tubes for which the skyrmion’s helicity, or in-plane spin angle, is twisted
through 2π along its length, such that the ends match [71, 290]. More generally, for a
skyrmion texture with a skyrmion number Nsk, the Hopf index is given by H = PNsk,
where P is the number of twists. If we consider the twisting along the z-direction
(before identification of the ends), the Hopf index, given by the Whitehead formula
(3.3), becomes

H =
Nsk

4π

∫ ∞

−∞
dz

∫ ∞

0
dρ sinΘ(∂zΘ∂ρη − ∂zη∂ρΘ)

= NskP, (11.9)

It should be noted that the base space is no longer S3 (by stereographic projection onto
R3), but rather S2 × S1, where S2 ∼= R2 ∪ {∞} due to the stereographic projection
S2 → R2 ∪ {∞}, as in Fig. 2.6, and S1 is from the identification of the endpoints.
As such, H is no longer a homotopy invariant of the system, but rather Nsk and P
modulo 2Nsk are separately homotopy invariants [291, 292]3. Despite this difference in

3That P modulo 2Nsk is a homotopy invariant of the system can be seen by analogy with Dirac’s belt
trick [293]. Consider the preimages of a skyrmion tube with Nsk = 1 without the rotation, such that
they do not twist around each other. Now consider twisting one end through 4π. By stretching the
resulting twisted preimages such that they pass over one of the fixed ends of the tube, the tangling
can be undone. Various animations of Dirac’s belt trick exist online that illustrate this principle.
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topology, objects for which (3.3) yields a finite integer when the integration is performed
over S2 × S1 have previously been studied in the Skyrme-Faddeev model [290, 292] and
Bose-Einstein condensates [294], and we continue to refer to them as hopfions.

In previous sections, we have shown that a monotonic rotation of a skyrmion’s helicity
in a frustrated magnetic material can be induced by the application of an oscillating
electric field. Here, we effectively have the situation of the previous discussion of
skyrmion along z with the helicity changing by 2π over the tube, with the vertical
spatial dimension having been replaced with time extending over the period T . The
compactification of the R time axis to S1 is realised through the energy functional of the
system being time-periodic, in such a way that it induces a rotation of the skyrmion’s
helicity of 2π over a period T , allowing for identification of the endpoints. The topological
invariant to characterise magnetic hopfions in spacetime, which is invariant under the
gauge transformation A → A+∇χ, where χ is an arbitrary scalar field, is then

H = − 1

(8π)2

∫ T

0
dt

∫
R2

d2rF (r) ·A(r). (11.10)

An illustration of the preimages associated with the skyrmion’s helicity rotation is shown
in Fig. 11.9(a), where the inset shows the identification of the preimages at t = 0 and
t = T .

That the spacetime Hopf index is invariant under a gauge transformation is shown as
follows. We consider a gauge transformation A′ = A + ∇χ, where χ is an arbitrary
scalar field. Equation (11.10) becomes

H ′ = H − 1

(8π)2

∫ T

0
dt

∫
R2

d2rF (r) ·∇χ(r). (11.11)

Using the identity F ·∇χ = ∇ · (χF )− χ∇ · F , the integral can be written as∫ T

0
dt

∫
R2

d2r∇ · (χF )−
∫ T

0
dt

∫
R2

d2r χ∇ · F . (11.12)

The of these integrals is a boundary term, which vanishes due to the periodic boundary
conditions of t. In the second integral, ∇ ·F vanishes as, in cylindrical polar coordinates,
F = 2 sinΦ(∇Θ×∇Φ), and thus4

∇ · F = 2∇(sinΘ) · (∇Θ×∇Φ)

= 2 cosΘ∇Θ · (∇Θ×∇Φ)

= 0. (11.13)

Hence, H ′ = H, and the spacetime Hopf index is gauge-invariant. This proof was based
on the discussion in Ref. [295].

With this topological interpretation of the dynamics of skyrmions in frustrated mag-
nets, we can assign a topological index to the various regimes of behaviour shown in
Fig 11.4(a). In the left-hand lobe, in which the skyrmion’s helicity rotates predominantly
anticlockwise, we see that the spacetime Hopf index H is predominantly −1. In the other
lobe in which the helicity evolution is clockwise, H = 1. Shown in the insets are the

4We have used the identity ∇ · (fg) = ∇f · g + f∇ · g for a scalar field f and vector field g.

98



11.4. Topological Interpretation as Spacetime Magnetic Hopfions

x

t

y

T

T/2

0

x

t

y

T

T/2

0

mx

my
mz

mx

my

mz

mx

mz

my

a) b)

Figure 11.9.: Illustration of the creation of spacetime magnetic hopfions by (a) the
rotation of a single skyrmion’s helicity through 2π and (b) the braiding
of two skyrmions around each other. The preimages, shown as coloured
curves, are shown for four selected magnetisation directions. After the
identification of the preimages at time intervals T , a spacetime magnetic
hopfion with Hopf index H = +1 is formed, as shown in the insets. Figure
taken from our publication Ref. [286].

preimages of mx = +1 and mx = −1 in red and cyan respectively. We also note that
the more exotic dynamics shown in Fig. 11.6 also have this topological interpretation;
the preimages in Fig. 11.6(b) have the same overall linking when the ends are identified.

Helicity rotation could potentially be observed in skyrmion-hosting systems with tunable
or weak DMI for dynamically stabilised skyrmions where the helicity can be tuned [272,
296]. To observe spacetime magnetic hopfions constructed through the rotation of a
magnetic skyrmion’s helicity, one must measure the skyrmion’s helicity. The helicity
could be obtained from Lorentz transmission electron microscopy (LTEM) [297] and
circularly polarised resonance elastic X-ray scattering [298]. The helicity can be made
to rotate through various mechanisms, such as through the application of spin-polarised
currents [119, 203, 299, 300], oscillating magnetic [198] and electric fields [286, 301, 302].

An alternative route for the realisation of spacetime magnetic hopfions is through the
braiding of several skyrmions, illustrated in Fig. 11.9(b). The manipulation of skyrmions’
positions has been an area of significant research interest, with various methods such
as using electric currents (as discussed in Chapter 9), tilted magnetic fields [303],
magnetic field gradients [241], temperature gradients [304], and circularly polarised laser
illumination [305] having been proposed. Skyrmion braiding has also been proposed as a
potential topological computing platform [306]. For the braiding of two skyrmions, the
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period is defined by the time required to swap their positions. If the swap is anticlockwise,
the spacetime Hopf index H = 1. If it is clockwise, H = −1. This construction could be
generalised to an arbitrary number of skyrmions, arranged, for example, into skyrmion
crystals, skyrmion bags, or engineered arrangements in nanopatterned substrates. In this
case of the braiding of multiple magnetic skyrmions, spacetime magnetic hopfions with
higher spacetime Hopf indices would result. The manipulation of skyrmion positions
could be achieved using experimentally reported means in the metallic chiral magnet
FeGe [233, 307], the insulating chiral magnet Cu2OSeO3 [177, 241, 308], the van der
Waals ferromagnet Fe3GeTe2 [309], and magnetic multilayers [310, 311]. In order
to measure the positions of the skyrmions, scanning transmission X-ray microscopy
(STXM) could be used [311, 312], as well as magneto-optical Kerr effect (MOKE)
microscopy [310, 313], and magnetic force microscopy (MFM) [314, 315].

In summary, we have uncovered different regimes skyrmion dynamics in frustrated mag-
nets subject to an applied oscillating electric field using collective coordinate modelling,
which we have validated using micromagnetic modelling. Furthermore, we have offered
an interpretation of these structures in spacetime by proposing the spacetime magnetic
hopfion.
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Chapter 12
Summary

In this Thesis, we have used analytical and numerical modelling within the micromag-
netic framework to model skyrmions in a variety of systems: in the ferromagnetic and
spin spiral states of chiral magnets, as well as in frustrated magnets. Furthermore, we
have discussed bulk magnetic textures: magnetic vortex rings and magnetic hopfions.

In Part II of this Thesis, inspired by results of previous works investigating the creation
of skyrmion-antiskyrmion pairs through the interaction of spin-transfer torques with
gradients induced by magnetic impurities considered in Chapter 6, we have proposed
a protocol for the creation of skyrmion-antiskyrmion pairs in the cycloidal state of a
magnet. This is presented at the end of Chapter 7. Here, the natural confinement of the
skyrmions to lanes offers numerous advantages in device applications over systems where
skyrmions are in a ferromagnetic background. The confinement mitigates the skyrmion
Hall effect discussed in Chapter 9 and allows for higher translational motion speeds.
Moreover, the skyrmions can be stabilised without the application of a perpendicular
magnetic field. We have furthermore investigated the current-driven creation of magnetic
vortex rings in bulk ferromagnetic systems and found that different impurity shapes lead
to different internal structures of the vortex rings that are created.

In Part III, in addition to discussing the current-driven translational motion of mag-
netic skyrmions in regimes in which they behave as rigid, particle-like objects, we
have modelled their internal dynamics in both chiral and frustrated magnets. For
the case of chiral magnets, which was the subject of Chapter 10, we showed that
applying external magnetic fields with frequencies corresponding to unit fractions of the
skyrmions’ eigenfrequencies excited the corresponding eigenmodes. For higher applied
field amplitudes, we found the excitation of the eigenmodes with fractional frequencies
of the eigenfrequencies to be more efficient than the applied field frequency matching
the eigenfrequency. This has applications for frequency multiplication of magnons in
magnonic devices, and we showed that the principle is generalisable to other magnetic
textures. In Chapter 11, using collective coordinate modelling and micromagnetic
simulations, we demonstrated that applying an oscillating electric field to a skyrmion in
a frustrated magnet can excite the helicity internal mode. We uncovered various regimes
of this behaviour, depending on the amplitude and frequency of the electric field. We
additionally interpreted these dynamics in terms of a spacetime Hopf index.

In summary, we have investigated methods to create magnetic skyrmions. Furthermore,
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we have explored their dynamics in various regimes, with potential device applications
in magnonics, conventional computing, and unconventional computing. We envisage
that the theoretical results presented will inspire experimental studies that pave the way
towards the realisation of skyrmions in these applications.
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Appendix A
Numerical Calculation of Topological
Indices

In the analysis of some of the micromagnetic simulations in this Thesis, it is necessary to
numerically calculate topological indices of magnetisation textures. In this Appendix, we
present Python code to calculate the skyrmion number Nsk, given by (2.8), and the Hopf
index H, given by (3.3). In both cases, we use the findiff module [316] to calculate
the derivatives.

A.1. Numerical Calculation of the Skyrmion Number

In the analysis of data from certain simulations, such as those in which we calculate
the skyrmion-antiskyrmion pair creation frequency in Chapter 6, it is necessary to
numerically calculate the skyrmion number Nsk. The code used to calculate Nsk is shown
in Listing A.1. Where the skyrmion number density ρsk(r) is required, the skyrmion
density array is output, instead of the final sum.

1 import numpy as np

2 import findiff

3

4 def skyrmionNumber(m, dx , dy , acc =4):

5 """ Calculate the skyrmion number density of a magnetic texture

contained in an array of shape (Nx , Ny , 1, 3)

6

7 Args:

8 m (ndarray): Array of shape (Nx , Ny , 1, 3).

9 dx (float64): The simulation cell size in the x-dimension.

10 dy (float64): The simulation cell size in the y-dimension.

11 acc (int , optional): Order of the accuracy for which the

derivatives should be calculated.

12

13 Returns:

14 Two -dimensional array of skyrmion number densities over the xy-

plane.

15

16 """

17

18 # args: axis , discretisation , derivative order , accuracy

19 d_dx = findiff.FinDiff(0, dx, 1, acc=acc)
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20 d_dy = findiff.FinDiff(1, dy, 1, acc=acc)

21

22 mdx = d_dx(m) / dx

23 mdy = d_dy(m) / dy

24

25 # Elementwise dot product

26 skDensityArray = np.einsum("ijk ,ijk ->ij", m, np.cross(mdx , mdy))

27

28 return np.sum(skDensityArray) / (4*np.pi)

Listing A.1: Code to numerically evaluate the skyrmion number of a magnetisation
texture in a two-dimensional plane.

A.2. Numerical Calculation of the Hopf Index

In Chapter 8, we evaluate the Hopf index of the vortex rings shed from the impurity.
The Hopf index can be calculated using a discretised form of the Whitehead formula
(3.3), the implementation of which is provided below.

1 import numpy as np

2 import findiff

3

4 def HopfIdx(m, dx , dy , dz , acc =8):

5 """ Calculate the Hopf index of a magnetisation vector field of shape (

Nx , Ny , Nz , 3).

6

7 Args:

8 m (ndarray): Magnetisation array of the shape (Nx , Ny , Nz , 3).

9 dx (float64): The simulation cell size in the x-dimension.

10 dy (float64): The simulation cell size in the y-dimension.

11 dy (float64): The simulation cell size in the z-dimension.

12 acc (int , optional): Order of the accuracy for which the

derivatives should be calculated.

13

14 Returns:

15 The calculated Hopf index of the texture.

16

17 """

18

19 # args: axis , discretisation , derivative order , accuracy

20 d_dx = findiff.FinDiff(0, dx, 1, acc=acc)

21 d_dy = findiff.FinDiff(1, dy, 1, acc=acc)

22 d_dz = findiff.FinDiff(2, dz, 1, acc=acc)

23

24 mdx = d_dx(m)

25 mdy = d_dy(m)

26 mdz = d_dz(m)

27

28 # Emergent magnetic field

29 Fx = 2 * np.einsum("ijkl ,ijkl ->ijk", m, np.cross(mdy , mdz))

30 Fy = 2 * np.einsum("ijkl ,ijkl ->ijk", m, np.cross(mdz , mdx))

31 Fz = 2 * np.einsum("ijkl ,ijkl ->ijk", m, np.cross(mdx , mdy))

32

33 F = np.zeros((Fx.shape[0], Fx.shape[1], Fx.shape[2], 3))

34 F[:, :, :, 0] = Fx

35 F[:, :, :, 1] = Fy

36 F[:, :, :, 2] = Fz

106



A.2. Numerical Calculation of the Hopf Index

37

38 # Vector potential

39 A = np.zeros((Fz.shape[0], Fz.shape[1], Fz.shape[2], 3))

40 A[:, :, :, 0] = -np.cumsum(Fz , axis =1)

41 A[:, :, :, 2] = np.cumsum(Fx , axis =1)

42

43 # Elementwise dot product

44 dotProduct = np.einsum("ijkl ,ijkl ->ijk", F, A)

45

46 return -np.sum(dotProduct) / (8 * np.pi)**2

Listing A.2: Code to numerically evalute the Hopf index of a magnetisation texture.
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Appendix B
Derivation of Frustrated Energy Functional

The symmetric exchange interaction was discussed in Section 4.1. It was noted that the
model in the continuum limit (4.3) can be derived from the Heisenberg Hamiltonian (4.2),
which is the subject of this Appendix. In this derivation, we consider a triangular lattice
with nearest, next-nearest, next-next-nearest and next-next-next-nearest exchange in-
teractions with coupling constants J1, J2, J3, and J4 respectively. The primitive lattice
vectors are (a, 0) and (a/2,

√
3/2). This lattice is illustrated in Fig. B.1, where we only

show the first two couplings to prevent the diagram being too cluttered.

The energy corresponding to this system is

U = −S
2

2

∑
j

∑
n

Jjnmj ·mn, (B.1)

where each mi is a unit vector, S is the spin magnitude, the first sum is over all lattice
sites j, and the second sum is over the neighbours of each lattice site n. The prefactor
of 1/2 prevents the double-counting of spins. We take the Fourier transform mj =∑

q mqe
irj ·q. Explicitly performing the sum over the neighbours gives

U = −S
2

2

∑
j

∑
q

∑
q′
Jq′mq ·mq′eirj ·(q+q′), (B.2)

where we have defined

Jq′ ≡ J1Jq′,N + J2Jq′,NN + J3Jq′,NNN + J4Jq′,NNNN, (B.3)
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J1

J2

Figure B.1.: Schematic of frustrated exchange interactions in a triangular lattice. The
nearest, next-nearest, next-next-nearest, and next-next-next-nearest neigh-
bours from the spin at the site of the green dot are shown in red, blue,
orange, and magenta respectively. We only explicitly show the exchange
interactions for the nearest (J1) and next-nearest (J2) neighbours to avoid
the diagram becoming too cluttered.

with1

Jq′,N = 2

[
cos(aq′x) + cos

(
aq′x
2

+

√
3

2
aq′y

)
+ cos

(
aq′x
2

−
√
3

2
aq′y

)]
, (B.4a)

Jq′,NN = 2

[
cos

(
3

2
aq′x +

√
3

2
aq′y

)
+ cos

(
3

2
aq′x −

√
3

2
aq′y

)
+ cos(

√
3aq′y)

]
, (B.4b)

Jq′,NNN = 2
[
cos(2aq′x) + cos

(
aq′x +

√
3aq′y

)
+ cos

(
aq′x −

√
3aq′y

)]
, (B.4c)

Jq′,NNNN = 2
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cos

(
5

2
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√
3

2
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+ cos
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3aq′y
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+ cos

(
aq′x
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+
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3
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aq′y

)
+ cos

(
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aq′x −

√
3

2
aq′y

)

+ cos
(
2aq′x −

√
3aq′y

)
+ cos

(
aq′x
2

− 3
√
3

2
aq′y

)]
. (B.4d)

Using
∑

j e
irj ·(q+q′) = Nδq′,−q, where N is the number of lattice sites, we obtain

U = −NS
2

2

∑
q

Jqmq ·m−q. (B.5)

We now take the continuum limit, where the reciprocal lattice vectors are sufficiently
close together that the sum can be replace by an integral as

∑
q → LxLy

(2π)2

∫
d2q , where

1This comes from writing the exponentials out for each neighbour and using 2 cosx ≡ eix + e−ix.
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Lx and Ly are the horizontal and vertical extent of the lattice respectively. The energy
then reads

U = −NS
2

2

LxLy

(2π)2

∫
d2q J(q)m(q) ·m(−q). (B.6)

We assume sufficiently smooth magnetisation textures such that terms of O(q6) are
negligible. Taylor expanding the cosines in J(q) and setting qx = q cosϕ and qy = q sinϕ
gives2

J(q) = 6(J1 + J2 + J3 + 2J4)−
3

2
a2q2(J1 + 3J2 + 4J3 + 14J4)

+
3

32
a4q4(J1 + 9J2 + 16J3 + 98J4) +O(q6). (B.7)

The energy then becomes

U = −NS
2LxLy

2(2π)2

[
6(J1 + J2 + J3 + 2J4)

∫
d2qm(q) ·m(−q)

− 3

2
a2(J1 + 3J2 + 4J3 + 14J4)

∫
d2q q2m(q) ·m(−q)

+
3

32
a4(J1 + 9J2 + 16J3 + 98J4)

∫
d2q q4m(q) ·m(−q)

]
. (B.8)

We now turn to the evaluation of the integrals over q-space. The continuum form of
mj =

∑
q mqe

irj ·q is

m(r) =
LxLy

(2π)2

∫
d2qm(q)eir·q, (B.9)

for which the inverse transform is3

m(q) =
1

LxLy

∫
d2rm(r)e−ir·q. (B.10)

To evaluate the first integral in (B.8), we use the relation

1

(2π)2

∫
d2q eiq·(r

′−r) = δ(r′ − r). (B.11)

2Including higher powers of q would yield terms that include ϕ, i.e. spatial anisotropy terms.
3This can be seen by multiplying (B.9) by e−ir·q′

and integrating over r, using the identity

(2π)2δ(q′ − q) =
∫
d2r eir·(q

′−q).
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Thus, the first integral in (B.8) is∫
d2qm(q) ·m(−q) =

1

(LxLy)2

∫
d2q

∫
d2r

∫
d2r′m(r) ·m(r′)eiq·(r

′−r)

=
(2π)2

(LxLy)2

∫
d2r

∫
d2r′m(r) ·m(r′)δ(r′ − r)

=
(2π)2

(LxLy)2

∫
d2rm(r) ·m(r)

=
(2π)2

(LxLy)2

∫
d2r , (B.12)

where we have used that m(r) ·m(r) = 1.

To evaluate the second integral in (B.8), we can take the Laplacian of (B.11) to obtain the
relation

∫
d2q q2eq·(r

′−r) = −(2π)2∇2
rδ(r

′ − r), and we can apply the two-dimensional
analogue of f(x)δ(n)(x) = (−1)nf (n)(x)δ(x) to obtain∫

d2q q2m(q) ·m(−q) =
1

(LxLy)2

∫
d2q

∫
d2r

∫
d2r′ q2m(r) ·m(r′)eiq·(r

′−r)

= − (2π)2

(LxLy)2

∫
d2r

∫
d2r′m(r) ·m(r′)δ(r′ − r)

= − (2π)2

(LxLy)2

∫
d2rm(r) ·∇2m(r). (B.13)

An analogous procedure yields, for the third integral in (B.8),∫
d2q q4m(q) ·m(−q) =

(2π)2

(LxLy)2

∫
d2rm(r) ·∇4m(r). (B.14)

Overall, the energy is then

U = −NS
2LxLy

2(2π)2

[
6(J1 + J2 + J3 + 2J4)

(2π)2

(LxLy)2

∫
d2r

+
3

2
a2(J13J2 + 4J3 + 14J4)

(2π)2

(LxLy)2

∫
d2rm(r) ·∇2m(r)

+
3

32
a4(J1 + 9J2 + 16J3 + 98J4)

(2π)2

(LxLy)2

∫
d2rm(r) ·∇4m(r)

]
. (B.15)

The total number of spins is N = 2nLxLy/(
√
3a2), where n is the number of spins

per unit cell. As we typically consider thin but three-dimensional systems, we further
integrate over the direction perpendicular to the plane of the lattice. In this calculation,
we assume that interactions between the lattice layers a distance c apart are small
compared to the intra-layer interactions, and thus neglect them. Dropping the constant
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first term, the energy can be written as

U =

∫
d3r

[
− 3nS2

2
√
3c

(J1 + 3J2 + 4J3 + 14J4)m(r) ·∇2m(r)

− 3nS2a2

32
√
3c

(J1 + 9J2 + 16J3 + 98J4)m(r) ·∇4m(r)

]
, (B.16)

where the extra factor of c−1 comes from transforming the sum over the lattice layers to
an integral. We now define the exchange stiffness constants

I1 ≡ −3nS2

√
3c

(J1 + 3J2 + 4J3 + 14J4), (B.17a)

I2 ≡ −3nS2a2

16
√
3c

(J1 + 9J2 + 16J3 + 98J4), (B.17b)

such that the energy is written as

U =

∫
d3r

[
I1
2
m(r) ·∇2m(r) +

I2
2
m(r) ·∇4m(r)

]
. (B.18)

We note thatmi∂αmi = 0 as |m| = 1 is constant, and hence the direction of infinitessimal
changes in m must be perpendicular to it. Then, ∂α(mi∂αmi) = 0 = ∂αmi∂αmi +
mi∂α∂αmi, and thus mi∂α∂αmi = −∂αmi∂αmi, or m ·∇2m = −(∇m)2.

To re-write the other term, we use Green’s vector identity

∇2(a · b) = a ·∇2b− b ·∇2a+ 2∇ · [(b ·∇)a+ b× (∇× a)]. (B.19)

If we take a = m and b = ∇2m, and noting that ∇2(a · b) = ∇ · [∇(a · b)], we obtain

∇ · [∇(m ·∇2m)] = m ·∇4m−∇2m ·∇2m+2∇ · [(∇2m ·∇)m+∇2m× (∇×m)].
(B.20)

When this expression is integrated over space, the terms that are divergences become
boundary terms which are zero by Stoke’s theorem and assuming that, infinitely far away,
the texture is uniform such that the derivatives vanish. Thus, (B.18) can be re-written
as

U =

∫
d3r

[
−I1

2
(∇m)2 +

I2
2
(∇2m)2

]
, (B.21)

which completes the derivation of (4.3) from atomistic considerations of a triangular
lattice. The procedure could be repeated for other lattice structures such as a square
lattice with competing nearest and next-nearest neighbour interactions.

The expression for the saturation magnetisationMs in terms of atomistic parameters for
the triangular lattice reads

Ms =
µ

V
=

SµB√
3a2c/2

, (B.22)

where µ is the magnetic moment and V is the volume of the system. As investigations
into frustrated magnets in literature typically report the atomistic parameters, (B.17)
and (B.22) are useful in performing micromagnetic simulations based on parameters
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Appendix B. Derivation of Frustrated Energy Functional

for real materials. For example, using the values from Paddison et al. [204]: S = 7/2,
a = 0.406 nm, c = 0.409 nm, J1 = 0.31K, J1 = 0.19K, J3 = 0.27K, J4 = −0.21K, as well
as n = 1, we obtain the numerical values I1 = 3.51× 10−13 Jm−1, I2 = 5.25× 10−32 Jm,
Ms = 5.56× 105Am−1. This gives a characteristic length scale of our magnetic system
of
√
I2/I1 = 0.39 nm, or a spin spiral wavelength of λ =

√
8π2I2/I1 = 1.72 nm.
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Appendix C
Numerical Implementation of Effective
Fields in MuMax3

For the investigation of the behaviour of skyrmions in frustrated magnets subjected
to an applied electric field of Chapter 11, it was necessary to write extensions to
the micromagnetic solver MuMax3 to include the higher-order exchange term and the
interaction of the induced polarisation with the applied electric field in (11.1). In this
Appendix, we discuss the implementation of these effective fields.

C.1. Internal Structure of MuMax3

As MuMax3 is a package for numerically integrating the LLG equation, each energy
contribution is programmed using its effective field, rather than the energy term itself1.
MuMax3 is written in Go, with performance-critical parts (such as the calculation of
effective fields) written in CUDA, a programming language for the parallelisation of
calculations on Nvidia GPUs. Functions parallelised on the GPU using CUDA are known
as CUDA kernels.

The two subdirectories of the MuMax3 root directory that are important for adding
additional energy terms are the engine and cuda directories. In this Section, we explain
the functions that are called during each LLG time integration step to calculate the
effective field, which is used by MuMax3 to evolve the magnetisation.

Firstly, at each time integration step, the function engine.SetEffectiveField() of
engine/effectivefield.go is called. This function is responsible for adding the
effective fields from the various energy terms to the total effective field and calls functions
to individually add each term. The function is shown in the following Listing C.1.

1 func SetEffectiveField(dst *data.Slice) {

2 SetDemagField(dst) // set to B_demag ...

3 AddExchangeField(dst) // ... then add other terms

4 AddAnisotropyField(dst)

5 AddMagnetoelasticField(dst)

6 B_ext.AddTo(dst)

1When the energy contribution from each interaction is required, rather than explicitly calculating
the energy term, MuMax3 takes the scalar product of the contribution’s effective field with the
magnetisation.
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7 if !relaxing {

8 B_therm.AddTo(dst)

9 }

10 AddCustomField(dst)

11 }

Listing C.1: Code from engine/effectivefield.go which sets the effective field at each
LLG integration time step

Taking the exchange interaction as an example, the relevant function to add this effective
field term, called from engine.SetEffectiveField(), is engine.AddExchangeField().
This calls functions to calculate the exchange contribution to the total effective field,
and is shown in the following Listing C.2.

1 func AddExchangeField(dst *data.Slice) {

2 inter := !Dind.isZero ()

3 bulk := !Dbulk.isZero ()

4 ms := Msat.MSlice ()

5 defer ms.Recycle ()

6 switch {

7 case !inter && !bulk:

8 cuda.AddExchange(dst , M.Buffer (), lex2.Gpu(), ms, regions.Gpu(),

M.Mesh())

9 case inter && !bulk:

10 Refer("mulkers2017")

11 cuda.AddDMI(dst , M.Buffer (), lex2.Gpu(), din2.Gpu(), ms, regions.

Gpu(), M.Mesh(), OpenBC) // dmi+exchange

12 case bulk && !inter:

13 cuda.AddDMIBulk(dst , M.Buffer (), lex2.Gpu(), dbulk2.Gpu(), ms,

regions.Gpu(), M.Mesh(), OpenBC) // dmi+exchange

14 case inter && bulk:

15 util.Fatal("Cannot have interfacial -induced DMI and bulk DMI at

the same time")

16 }

17 }

Listing C.2: Code from engine/exchange.go to call functions that calculate the
contribution to the effective field from the symmetric exchange energy term.

In MuMax3, the exchange contribution to the effective field also includes the DMI
effective field if this is present in the system being modelled, so the function called
to calculate the effective field changes accordingly depending on whether or not DMI
is present, and the type of DMI. This was implemented in the code above using a
switch statement. As an example, we consider the case in which no DMI is present,
such that cuda.AddExchange(), defined in cuda/exchange.go, is called. The function
cuda.AddExchange() is shown below.

1 func AddExchange(B, m *data.Slice , Aex_red SymmLUT , Msat MSlice , regions

*Bytes , mesh *data.Mesh) {

2 c := mesh.CellSize ()

3 wx := float32 (2 / (c[X] * c[X]))

4 wy := float32 (2 / (c[Y] * c[Y]))

5 wz := float32 (2 / (c[Z] * c[Z]))

6 N := mesh.Size()

7 pbc := mesh.PBC_code ()

8 cfg := make3DConf(N)

9 k_addexchange_async(B.DevPtr(X), B.DevPtr(Y), B.DevPtr(Z),

10 m.DevPtr(X), m.DevPtr(Y), m.DevPtr(Z),
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Figure C.1.: Stencil to to approximate the derivatives of the magnetisation m(r) using
nearest-neighbours.

11 Msat.DevPtr (0), Msat.Mul (0),

12 unsafe.Pointer(Aex_red), regions.Ptr ,

13 wx , wy , wz , N[X], N[Y], N[Z], pbc , cfg)

14 }

Listing C.3: Code from cuda/engine.go which interfaces with the CUDA kernel to
calculate the exchange effective field.

This function calls the cuda.k_addexchange_async() function, which is a CUDA wrapper
to interface with the CUDA kernel. The file containing cuda.k_addexchange_async() is
automatically generated when the CUDA kernels are compiled, and we do not show it here.
Finally, the CUDA code to calculate the effective field is given in cuda/exchange.cu. This
implements a discretised version of the effective field due to the symmetric exchange
interaction

Beff =
2A

Ms

∑
i

∂2i m, (C.1)

where the sum runs over i ∈ {x, y, z}. In MuMax3, this is discretised as

Beff =
2A

Ms

∑
i

m(ri +∆i)− 2m(ri) +m(ri −∆i)

∆i
, (C.2)

which is illustrated in Fig. C.1. The CUDA kernel implementing this is shown in the
following listing.

1 #include <stdint.h>

2 #include "exchange.h"

3 #include "float3.h"

4 #include "stencil.h"

5 #include "amul.h"

6
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7 // See exchange.go for more details.

8 extern "C" __global__ void

9 addexchange(float* __restrict__ Bx, float* __restrict__ By, float*

__restrict__ Bz ,

10 float* __restrict__ mx , float* __restrict__ my , float*

__restrict__ mz ,

11 float* __restrict__ Ms_ , float Ms_mul ,

12 float* __restrict__ aLUT2d , uint8_t* __restrict__ regions ,

13 float wx , float wy , float wz , int Nx , int Ny , int Nz , uint8_t

PBC) {

14

15 int ix = blockIdx.x * blockDim.x + threadIdx.x;

16 int iy = blockIdx.y * blockDim.y + threadIdx.y;

17 int iz = blockIdx.z * blockDim.z + threadIdx.z;

18

19 if (ix >= Nx || iy >= Ny || iz >= Nz) {

20 return;

21 }

22

23 // central cell

24 int I = idx(ix , iy , iz);

25 float3 m0 = make_float3(mx[I], my[I], mz[I]);

26

27 if (is0(m0)) {

28 return;

29 }

30

31 uint8_t r0 = regions[I];

32 float3 B = make_float3 (0.0 ,0.0 ,0.0);

33

34 int i_; // neighbor index

35 float3 m_; // neighbor mag

36 float a__; // inter -cell exchange stiffness

37

38 // left neighbor

39 i_ = idx(lclampx(ix -1), iy, iz); // clamps or wraps index

according to PBC

40 m_ = make_float3(mx[i_], my[i_], mz[i_]); // load m

41 m_ = ( is0(m_)? m0: m_ ); // replace missing non -

boundary neighbor

42 a__ = aLUT2d[symidx(r0 , regions[i_])];

43 B += wx * a__ *(m_ - m0);

44

45 // right neighbor

46 i_ = idx(hclampx(ix+1), iy, iz);

47 m_ = make_float3(mx[i_], my[i_], mz[i_]);

48 m_ = ( is0(m_)? m0: m_ );

49 a__ = aLUT2d[symidx(r0 , regions[i_])];

50 B += wx * a__ *(m_ - m0);

51

52 // back neighbor

53 i_ = idx(ix, lclampy(iy -1), iz);

54 m_ = make_float3(mx[i_], my[i_], mz[i_]);

55 m_ = ( is0(m_)? m0: m_ );

56 a__ = aLUT2d[symidx(r0 , regions[i_])];

57 B += wy * a__ *(m_ - m0);

58

59 // front neighbor

60 i_ = idx(ix, hclampy(iy+1), iz);

61 m_ = make_float3(mx[i_], my[i_], mz[i_]);
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62 m_ = ( is0(m_)? m0: m_ );

63 a__ = aLUT2d[symidx(r0 , regions[i_])];

64 B += wy * a__ *(m_ - m0);

65

66 // only take vertical derivative for 3D sim

67 if (Nz != 1) {

68 // bottom neighbor

69 i_ = idx(ix, iy, lclampz(iz -1));

70 m_ = make_float3(mx[i_], my[i_], mz[i_]);

71 m_ = ( is0(m_)? m0: m_ );

72 a__ = aLUT2d[symidx(r0 , regions[i_])];

73 B += wz * a__ *(m_ - m0);

74

75 // top neighbor

76 i_ = idx(ix, iy, hclampz(iz+1));

77 m_ = make_float3(mx[i_], my[i_], mz[i_]);

78 m_ = ( is0(m_)? m0: m_ );

79 a__ = aLUT2d[symidx(r0 , regions[i_])];

80 B += wz * a__ *(m_ - m0);

81 }

82

83 float invMs = inv_Msat(Ms_ , Ms_mul , I);

84 Bx[I] += B.x*invMs;

85 By[I] += B.y*invMs;

86 Bz[I] += B.z*invMs;

87 }

Listing C.4: CUDA kernel from cuda/exchange.cu to calculate the contribution to the
effective field from symmetric exchange interactions.

Note that, instead of dividing by the cell discretisation sizes, their reciprocal is passed
to the CUDA kernel. This means that the computationally expensive division operation
is performed on the CPU, which is more efficient than calculating it on the GPU.

In summary, the steps to be followed to add a custom effective field to MuMax3 are:

1. Add the CUDA kernel to calculate the effective field to the cuda directory.

2. Add the corresponding Go file to the cuda directory, which calls the function defined
in the CUDA wrapper file generated when the CUDA kernels are compiled.

3. Add a file in the engine directory to call the code from the cuda directory. If an
energy contribution that already exists is being modified, instead of adding a new
file, modify the existing file in the engine directory accordingly.

4. Add the new field to SetEffectiveField() from engine/effectivefield.go if
a new energy term was added (as opposed to an existing term modified).

5. Compile the CUDA kernels by running make from the cuda directory.

6. Run go install from the cmd/mumax3 directory, which puts the compiled MuMax3

binary in $GOPATH/bin.

C.2. Implementation of Higher-Order Exchange

To numerically calculate the effective field corresponding to the frustrated exchange
functional (4.3), we perform a discretisation analogous to in (C.2). The effective field
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Figure C.2.: The stencil used to numerically evaluate the effective field for a magnet with
competing exchange interactions.

reads

Beff = − I1
Ms

∑
i

∂2i m− I2
Ms

∑
i

∂4i m+ 2
∑
i>j

∂2i ∂
2
jm

 . (C.3)

The discretised form of this expression is long, and we break it up into contributions
from the various nth-nearest-neighbours. The colour coding for the contribution from
each neighbour matches Fig. C.2.
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The corresponding CUDA kernel is shown below.

1 #include <stdint.h>

2 #include "exchange.h"

3 #include "float3.h"

4 #include "stencil.h"

5 #include "amul.h"

6

7 // See exchange_fourth_order.go for more details.
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8

9 extern "C" __global__ void

10 addexchangefourthorder(float* __restrict__ Bx , float* __restrict__ By ,

float* __restrict__ Bz ,

11 float* __restrict__ mx , float* __restrict__ my , float*

__restrict__ mz ,

12 float* __restrict__ Ms_ , float Ms_mul ,

13 float* __restrict__ I1 , float* __restrict__ I2 ,

14 uint8_t* __restrict__ regions ,

15 float wx , float wy , float wz , int Nx , int Ny , int Nz , uint8_t

PBC) {

16

17 int ix = blockIdx.x * blockDim.x + threadIdx.x;

18 int iy = blockIdx.y * blockDim.y + threadIdx.y;

19 int iz = blockIdx.z * blockDim.z + threadIdx.z;

20

21 if (ix >= Nx || iy >= Ny || iz >= Nz) {

22 return;

23 }

24

25 // central cell

26 int I = idx(ix , iy , iz);

27 float3 m0 = make_float3(mx[I], my[I], mz[I]);

28

29 if (is0(m0)) {

30 return;

31 }

32

33 uint8_t r0 = regions[I];

34 float3 B = make_float3 (0.0 ,0.0 ,0.0);

35

36 int i_; // neighbor index

37 float3 m_; // neighbor mag

38 float I1__; // second -order exchange stiffness

39 float I2__; // fourth -order exchange stiffness

40

41

42 // ////////////////

43 // Central Spin //

44 // ////////////////

45 i_ = idx(ix, iy, iz);

46 m_ = make_float3(mx[i_], my[i_], mz[i_]);

// load m

47 m_ = ( is0(m_)? m0: m_ );

// replace missing non -boundary neighbor

48 I1__ = I1[symidx(r0, regions[i_])];

49 I2__ = I2[symidx(r0, regions[i_])];

50 B += 2 * I1__ * (wx*wx + wy*wy + wz*wz) * m_;

51 B -= 6 * I2__ * (wx*wx*cw*cw + wy*wy*wy*wy) + wz*wz*wz*wz) * m_;

52 B -= 8 * I2__ * (wx*wx*wy*wy + wx*wx*wz*wz + wy*wy*wz*wz) * m_;

53

54

55 // /////////////////////////////

56 // Direct Nearest Neighbours //

57 // /////////////////////////////

58

59 // Left neighbour

60 i_ = idx(lclampx(ix -1), iy, iz);

// clamps or wraps index according to PBC
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61 m_ = make_float3(mx[i_], my[i_], mz[i_]);

// load m

62 m_ = ( is0(m_)? m0: m_ );

// replace missing non -boundary neighbor

63 I1__ = I1[symidx(r0, regions[i_])];

64 I2__ = I2[symidx(r0, regions[i_])];

65 B -= (I1__ * wx*wx) * m_;

66 B += 4 * I2__ * (wx*wx*wx*wx + wx*wx*wy*wy + wx*wx*wz*wz) * m_;

67

68 // Right neighbour

69 i_ = idx(hclampx(ix+1), iy, iz);

// clamps or wraps index according to PBC

70 m_ = make_float3(mx[i_], my[i_], mz[i_]);

// load m

71 m_ = ( is0(m_)? m0: m_ );

// replace missing non -boundary neighbor

72 I1__ = I1[symidx(r0, regions[i_])];

73 I2__ = I2[symidx(r0, regions[i_])];

74 B -= (I1__ * wx*wx) * m_;

75 B += 4 * I2__ * (wx*wx*wx*wx + wx*wx*wy*wy + wx*wx*wz*wz) * m_;

76

77 // Below neighbour

78 i_ = idx(ix, lclampy(iy -1), iz);

// clamps or wraps index according to PBC

79 m_ = make_float3(mx[i_], my[i_], mz[i_]);

// load m

80 m_ = ( is0(m_)? m0: m_ );

// replace missing non -boundary neighbor

81 I1__ = I1[symidx(r0, regions[i_])];

82 I2__ = I2[symidx(r0, regions[i_])];

83 B -= (I1__ * wy*wy) * m_;

84 B += 4 * I2__ * (wy*wy*wy*wy + wy*wy*wx*wx + wy*wy*wz*wz) * m_;

85

86 // Above neighbour

87 i_ = idx(ix, hclampy(iy+1), iz);

// clamps or wraps index according to PBC

88 m_ = make_float3(mx[i_], my[i_], mz[i_]);

// load m

89 m_ = ( is0(m_)? m0: m_ );

// replace missing non -boundary neighbor

90 I1__ = I1[symidx(r0, regions[i_])];

91 I2__ = I2[symidx(r0, regions[i_])];

92 B -= (I1__ * wy*wy) * m_;

93 B += 4 * I2__ * (wy*wy*wy*wy + wy*wy*wx*wx + wy*wy*wz*wz) * m_;

94

95 // Bottom neighbour

96 i_ = idx(ix, iy, lclampz(iz -1));

// clamps or wraps index according to PBC

97 m_ = make_float3(mx[i_], my[i_], mz[i_]);

// load m

98 m_ = ( is0(m_)? m0: m_ );

// replace missing non -boundary neighbor

99 I1__ = I1[symidx(r0, regions[i_])];

100 I2__ = I2[symidx(r0, regions[i_])];

101 B -= (I1__ * wz*wz) * m_;

102 B += 4 * I2__ * (wz*wz*wz*wz + wz*wz*wx*wx + wz*wz*wy*wy) * m_;

103

104 // Top neighbour

105 i_ = idx(ix, iy, hclampz(iz+1));

// clamps or wraps index according to PBC
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106 m_ = make_float3(mx[i_], my[i_], mz[i_]);

// load m

107 m_ = ( is0(m_)? m0: m_ );

// replace missing non -boundary neighbor

108 I1__ = I1[symidx(r0, regions[i_])];

109 I2__ = I2[symidx(r0, regions[i_])];

110 B -= (I1__ * wz*wz) * m_;

111 B += 4 * I2__ * (wz*wz*wz*wz + wz*wz*wx*wx + wz*wz*wy*wy) * m_;

112

113

114 // ////////////////////////////////////////////

115 // Diagonal Nearest Neighbours in z=0 Plane //

116 // ////////////////////////////////////////////

117

118 // Bottom -left neighbour

119 i_ = idx(lclampx(ix -1), lclampy(iy -1), iz); // clamps or wraps

index according to PBC

120 m_ = make_float3(mx[i_], my[i_], mz[i_]); // load m

121 m_ = ( is0(m_)? m0: m_ ); // replace missing

non -boundary neighbor

122 I2__ = I2[symidx(r0, regions[i_])];

123 B -= (2 * I2__ * wx*wx*wy*wy) * m_;

124

125 // Top -left neighbour

126 i_ = idx(lclampx(ix -1), hclampy(iy+1), iz); // clamps or wraps

index according to PBC

127 m_ = make_float3(mx[i_], my[i_], mz[i_]); // load m

128 m_ = ( is0(m_)? m0: m_ ); // replace missing

non -boundary neighbor

129 I2__ = I2[symidx(r0, regions[i_])];

130 B -= (2 * I2__ * wx*wx*wy*wy) * m_;

131

132 // Bottom -right neighbour

133 i_ = idx(hclampx(ix+1), lclampy(iy -1), iz); // clamps or wraps

index according to PBC

134 m_ = make_float3(mx[i_], my[i_], mz[i_]); // load m

135 m_ = ( is0(m_)? m0: m_ ); // replace missing

non -boundary neighbor

136 I2__ = I2[symidx(r0, regions[i_])];

137 B -= (2 * I2__ * wx*wx*wy*wy) * m_;

138

139 // Top -right neighbour

140 i_ = idx(hclampx(ix+1), hclampy(iy+1), iz); // clamps or wraps

index according to PBC

141 m_ = make_float3(mx[i_], my[i_], mz[i_]); // load m

142 m_ = ( is0(m_)? m0: m_ ); // replace missing

non -boundary neighbor

143 I2__ = I2[symidx(r0, regions[i_])];

144 B -= (2 * I2__ * wx*wx*wy*wy) * m_;

145

146

147 // ////////////////////////////////////////////

148 // Diagonal Nearest Neighbours in x=0 Plane //

149 // ////////////////////////////////////////////

150

151 // Bottom -left neighbour

152 i_ = idx(ix, lclampy(iy -1), hclampz(iz+1)); // clamps or wraps

index according to PBC

153 m_ = make_float3(mx[i_], my[i_], mz[i_]); // load m
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154 m_ = ( is0(m_)? m0: m_ ); // replace missing

non -boundary neighbor

155 I2__ = I2[symidx(r0, regions[i_])];

156 B -= (2 * I2__ * wy*wy*wz*wz) * m_;

157

158 // Top -left neighbour

159 i_ = idx(ix, hclampy(iy+1), hclampz(iz+1)); // clamps or wraps

index according to PBC

160 m_ = make_float3(mx[i_], my[i_], mz[i_]); // load m

161 m_ = ( is0(m_)? m0: m_ ); // replace missing

non -boundary neighbor

162 I2__ = I2[symidx(r0, regions[i_])];

163 B -= (2 * I2__ * wy*wy*wz*wz) * m_;

164

165 // Bottom -right neighbour

166 i_ = idx(ix, lclampy(iy -1), lclampz(iz -1)); // clamps or wraps

index according to PBC

167 m_ = make_float3(mx[i_], my[i_], mz[i_]); // load m

168 m_ = ( is0(m_)? m0: m_ ); // replace missing

non -boundary neighbor

169 I2__ = I2[symidx(r0, regions[i_])];

170 B -= (2 * I2__ * wy*wy*wz*wz) * m_;

171

172 // Top -right neighbour

173 i_ = idx(ix, hclampy(iy+1), lclampz(iz -1)); // clamps or wraps

index according to PBC

174 m_ = make_float3(mx[i_], my[i_], mz[i_]); // load m

175 m_ = ( is0(m_)? m0: m_ ); // replace missing

non -boundary neighbor

176 I2__ = I2[symidx(r0, regions[i_])];

177 B -= (2 * I2__ * wy*wy*wz*wz) * m_;

178

179

180 // ////////////////////////////////////////////

181 // Diagonal Nearest Neighbours in y=0 Plane //

182 // ////////////////////////////////////////////

183

184 // Bottom -left neighbour

185 i_ = idx(lclampx(ix -1), iy, hclampz(iz+1)); // clamps or wraps

index according to PBC

186 m_ = make_float3(mx[i_], my[i_], mz[i_]); // load m

187 m_ = ( is0(m_)? m0: m_ ); // replace missing

non -boundary neighbor

188 I2__ = I2[symidx(r0, regions[i_])];

189 B -= (2 * I2__ * wx*wx*wz*wz) * m_;

190

191 // Top -left neighbour

192 i_ = idx(lclampx(ix -1), iy, lclampz(iz -1)); // clamps or wraps

index according to PBC

193 m_ = make_float3(mx[i_], my[i_], mz[i_]); // load m

194 m_ = ( is0(m_)? m0: m_ ); // replace missing

non -boundary neighbor

195 I2__ = I2[symidx(r0, regions[i_])];

196 B -= (2 * I2__ * wx*wx*wz*wz) * m_;

197

198 // Bottom -right neighbour

199 i_ = idx(hclampx(ix+1), iy, hclampz(iz+1)); // clamps or wraps

index according to PBC

200 m_ = make_float3(mx[i_], my[i_], mz[i_]); // load m
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201 m_ = ( is0(m_)? m0: m_ ); // replace missing

non -boundary neighbor

202 I2__ = I2[symidx(r0, regions[i_])];

203 B -= (2 * I2__ * wx*wx*wz*wz) * m_;

204

205 // Top -right neighbour

206 i_ = idx(hclampx(ix+1), iy, lclampz(iz -1)); // clamps or wraps

index according to PBC

207 m_ = make_float3(mx[i_], my[i_], mz[i_]); // load m

208 m_ = ( is0(m_)? m0: m_ ); // replace missing

non -boundary neighbor

209 I2__ = I2[symidx(r0, regions[i_])];

210 B -= (2 * I2__ * wx*wx*wz*wz) * m_;

211

212

213 // /////////////////////////////////////

214 // Next -Next -Next Nearest Neighbours //

215 // /////////////////////////////////////

216

217 // Two over to left

218 i_ = idx(lclampx(ix -2), iy, iz); // clamps or wraps

index according to PBC

219 m_ = make_float3(mx[i_], my[i_], mz[i_]); // load m

220 m_ = ( is0(m_)? m0: m_ ); // replace missing non -

boundary neighbor

221 I2__ = I2[symidx(r0, regions[i_])];

222 B -= (I2__ * wx*wx*wx*wx) * m_;

223

224 // Two over to right

225 i_ = idx(hclampx(ix+2), iy, iz); // clamps or wraps

index according to PBC

226 m_ = make_float3(mx[i_], my[i_], mz[i_]); // load m

227 m_ = ( is0(m_)? m0: m_ ); // replace missing non -

boundary neighbor

228 I2__ = I2[symidx(r0, regions[i_])];

229 B -= (I2__ * wx*wx*wx*wx) * m_;

230

231 // Two below

232 i_ = idx(ix, lclampy(iy -2), iz); // clamps or wraps

index according to PBC

233 m_ = make_float3(mx[i_], my[i_], mz[i_]); // load m

234 m_ = ( is0(m_)? m0: m_ ); // replace missing non -

boundary neighbor

235 I2__ = I2[symidx(r0, regions[i_])];

236 B -= (I2__ * wy*wy*wy*wy) * m_;

237

238 // Two above

239 i_ = idx(ix, hclampy(iy+2), iz); // clamps or wraps

index according to PBC

240 m_ = make_float3(mx[i_], my[i_], mz[i_]); // load m

241 m_ = ( is0(m_)? m0: m_ ); // replace missing non -

boundary neighbor

242 I2__ = I2[symidx(r0, regions[i_])];

243 B -= (I2__ * wy*wy*wy*wy)) * m_;

244

245 // Two bottom

246 i_ = idx(ix, iy, lclampz(iz -2)); // clamps or wraps

index according to PBC

247 m_ = make_float3(mx[i_], my[i_], mz[i_]); // load m
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248 m_ = ( is0(m_)? m0: m_ ); // replace missing non -

boundary neighbor

249 I2__ = I2[symidx(r0, regions[i_])];

250 B -= (I2__ * wz*wz*wz*wz) * m_;

251

252 // Two top

253 i_ = idx(ix, iy, hclampz(iz+2)); // clamps or wraps

index according to PBC

254 m_ = make_float3(mx[i_], my[i_], mz[i_]); // load m

255 m_ = ( is0(m_)? m0: m_ ); // replace missing non -

boundary neighbor

256 I2__ = I2[symidx(r0, regions[i_])];

257 B -= (I2__ * wz*wz*wz*wz) * m_;

258

259

260 float invMs = inv_Msat(Ms_ , Ms_mul , I);

261

262 Bx[I] += B.x*invMs;

263 By[I] += B.y*invMs;

264 Bz[I] += B.z*invMs;

265

266 }

Listing C.5: CUDA kernel for the calculation of the effective field of the frustrated exchange
in the energy functional (11.1).

C.3. Implementation of an Applied Electric Field

The effective field resulting in the interaction between an externally applied electric field
Eext = Eẑ and the induced polarisation given by (4.18) is given by

Beff =
2EPEa

Ms
[(∇ ·m)ẑ −∇mz], (C.5)

where the quantities are as discussed in Section 4.1. The CUDA kernel is given below,
where we have combined EPEa into a single variable variable Ered, as we work in rescaled
units in Chapter 11. The effective field is discretised as

Beff =
Ered

Ms

[(
mx(i+ 1, j)−my(i− 1, j)

∆x
+
my(i, j + 1)−my(i, j − 1)

∆y

)
ẑ

− mz(i+ 1, j)−mz(i− 1, j)

∆x
x̂− mz(i, j + 1)−mz(i, j − 1)

∆y
ŷ

]
, (C.6)

where i and j are the indices of the cells along the x- and y-axes respectively. This
discretised form of the effective field due to the applied electric field is implemented in
the CUDA kernel below.

1 #include <stdint.h>

2 #include "exchange.h"

3 #include "stencil.h"

4 #include "amul.h"

5

6 // Electric field term according to
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7 // Katsura , Nagaosa , Balatsky , Phys. Rev. Lett. 95, 057205 (2005).

8

9 extern "C" __global__ void

10 addelectric(float* __restrict__ Bx, float* __restrict__ By, float*

__restrict__ Bz ,

11 float* __restrict__ mx , float* __restrict__ my , float*

__restrict__ mz ,

12 float* __restrict__ Ms_ , float Ms_mul ,

13 float* __restrict__ eLUT2d , uint8_t* __restrict__ regions ,

14 float wx , float wy , float wz , int Nx , int Ny , int Nz , uint8_t

PBC) {

15

16 int ix = blockIdx.x * blockDim.x + threadIdx.x;

17 int iy = blockIdx.y * blockDim.y + threadIdx.y;

18 int iz = blockIdx.z * blockDim.z + threadIdx.z;

19

20 if (ix >= Nx || iy >= Ny || iz >= Nz) {

21 return;

22 }

23

24 // central cell

25 int I = idx(ix , iy , iz);

26 float3 m0 = make_float3(mx[I], my[I], mz[I]);

27

28 if (is0(m0)) {

29 return;

30 }

31

32 uint8_t r0 = regions[I];

33 float3 B = make_float3 (0.0 ,0.0 ,0.0);

34

35 int i_; // neighbor index

36 float3 m_; // neighbor mag

37 float ered__; // reduced electric field

38

39

40 // /////////////////

41 // x derivatives //

42 // /////////////////

43

44 // right neighbor

45 i_ = idx(hclampx(ix+1), iy, iz); // clamps or wraps index

according to PBC

46 m_ = make_float3(mx[i_], my[i_], mz[i_]); // load m

47 m_ = ( is0(m_)? m0: m_ ); // replace missing non -

boundary neighbor

48 ered__ = eLUT2d[symidx(r0, regions[i_])];

49 B.x -= (ered__ * wx) * m_.z;

50 B.z += (ered__ * wx) * m_.x;

51

52 // left neighbor

53 i_ = idx(lclampx(ix -1), iy, iz); // clamps or wraps index

according to PBC

54 m_ = make_float3(mx[i_], my[i_], mz[i_]); // load m

55 m_ = ( is0(m_)? m0: m_ ); // replace missing non -

boundary neighbor

56 ered__ = eLUT2d[symidx(r0, regions[i_])];

57 B.x += (ered__ * wx) * m_.z;

58 B.z -= (ered__ * wx) * m_.x;

59
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60 // /////////////////

61 // y derivatives //

62 // /////////////////

63

64 // above neighbor

65 i_ = idx(ix, hclampy(iy+1), iz);

66 m_ = make_float3(mx[i_], my[i_], mz[i_]);

67 m_ = ( is0(m_)? m0: m_ );

68 ered__ = eLUT2d[symidx(r0, regions[i_])];

69 B.y -= (ered__ * wy) * m_.z;

70 B.z += (ered__ * wy) * m_.y;

71

72 // below neighbor

73 i_ = idx(ix, lclampy(iy -1), iz);

74 m_ = make_float3(mx[i_], my[i_], mz[i_]);

75 m_ = ( is0(m_)? m0: m_ );

76 ered__ = eLUT2d[symidx(r0, regions[i_])];

77 B.y += (ered__ * wy) * m_.z;

78 B.z -= (ered__ * wy) * m_.y;

79

80

81 float invMs = inv_Msat(Ms_ , Ms_mul , I);

82 Bx[I] += B.x*invMs;

83 By[I] += B.y*invMs;

84 Bz[I] += B.z*invMs;

85 }

Listing C.6: CUDA kernel to numerically calculate the effective magnetic field due to
the interaction between an externally applied electric field and the induced
polarisation from the magnetisation texture.

We must additionally write a function engine.AddElectricEffectiveField, and
modify the function engine.SetEffectiveField() from Listing C.1 to call this func-
tion, in order to add the effective field from the applied electric field to the total effective
field. We write a new file engine/electric.go, with the contents below.

1 package engine

2

3 import (

4 "github.com/mumax /3/ cuda"

5 "github.com/mumax /3/ data"

6 )

7

8 var (

9 Ered = NewScalarParam("Ered", "J/m2", "Electric field (V/m) *

Polarization (C/m2) * Lattice constant (m)", &ered)

10 ered exchParam

11

12 B_elec = NewVectorField("B_elec", "T", "Effective magnetic field

due to electric field", AddElectricEffectiveField)

13 E_elec = NewScalarValue("E_elec", "J", "Electric field energy

density", GetElectricFieldEnergy)

14 Edens_elec = NewScalarField("Edens_elec", "J/m3", "Total electric

field energy density", AddElectricFieldEnergyDensity)

15 )

16

17 func init() {

18 registerEnergy(GetElectricFieldEnergy , AddElectricFieldEnergyDensity)

19 ered.init(Ered)
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20 }

21

22 var AddElectricFieldEnergyDensity = makeEdensAdder(B_elec , -0.5)

23

24 func AddElectricEffectiveField(dst *data.Slice) {

25

26 // Force an update if time -varying

27 Ered.lut.source.update ()

28

29 ms := Msat.MSlice ()

30 defer ms.Recycle ()

31 cuda.AddElectric(dst , M.Buffer (), ered.Gpu(), ms, regions.Gpu(), M.

Mesh())

32 }

33

34 func GetElectricFieldEnergy () float64 {

35 return -0.5 * cellVolume () * dot(&M_full , &B_elec)

36 }

Listing C.7: Go code to call the functions that calculate the effective field from the
interaction between the applied electric field and the induced polarisation.

129





Appendix D
Frustrated Magnet Ground State

It was stated in Section 5.4 that the ground state of a system described by the energy
functional (5.14) is a conical state for an applied magnetic field of magnitude Bext < 1/4
and a ferromagnetic state for Bext ≥ 1/4. The proof of this is provided in this Appendix
by considering the magnetisation in Fourier space and writing the energy functional in
completed square form. We write the magnetisation as a Fourier transform

m(r) =
∑
q

mqe
iq·r, (D.1)

where q are the wavevectors of the Fourier modes. For second-order exchange term
(∇m)2 = (∂am

b)(∂am
b), we see that

∂am
b = i

∑
q

mb
qq

aeiq·r, (D.2)

and hence
(∇m)2 = −

∑
q

∑
q′
qaq′amb

qm
b
q′ei(q+q′)·r, (D.3)

the volume integral over which is

∫
d3r (∇m)2 = −

∑
q

∑
q′
qaq′amb

qm
b
q′

V δq′,−q︷ ︸︸ ︷∫
d3r ei(q+q′)·r

= −V
∑
q

∑
q′
qaq′amb

qm
b
q′δq−q′

= V
∑
q

q2ma
qm

b
−qδ

ab, (D.4)

where V is the total volume of the system. Similarly, the fourth order exchange term
can be written as ∫

d3r (∇2m)2 = V
∑
q

q4ma
qm

b
−qδ

ab. (D.5)
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Turning to the Zeeman term, we note that, upon integration, it vanishes for all mq

where q ̸= 0, and we therefore write it as

−
∫

d3rBext ·m = −
∫

d3rBext ·m0 = V

(
m0 −

Bext

2

)2

− Vm2
0 − V

B2
ext

4
. (D.6)

Thus, (5.14) becomes

U =
V

2

∑
q

ma
q

(
q2 − 1

2

)2

δabmb
−q −

V

8

1︷ ︸︸ ︷∑
q

ma
qδ

abmb
−q

+
V

8
(m0 − 4Bext)

2 − V

8
m2

0 − 2VB2
ext, (D.7)

where, in the second term, we have used that m2 = 1, hence that V
∑

qm
a
qδ

abmb
−q =∫

d3rm2 = V . Splitting the first sum into q = 0 and q ̸= 0 terms,

U =
V

8

∑
q ̸=0

ma
q

(
q2 − 1

2

)2

δabmb
−q +

V

8
m2

0 −
V

8
+
V

8
(m0 − 4Bext)

2

− V

8
m2

0 − 2VB2
ext

=
V

2

∑
q ̸=0

ma
q

(
q2 − 1

2

)2

δabmb
−q +

V

8
(m0 − 4Bext)

2 − 2VB2
ext −

V

8
. (D.8)

The first term is positive semi-definite, the second term is non-negative, and the last two
terms are a constant which bounds the energy from below. Therefore, a state satisfying
q = 1/

√
2 and m0 = 4Bext is a ground state. For Bext < 1/4, this is fulfilled by a

magnetisation vector field corresponding to the conical state (5.15). For Bext ≥ 1/4, the
ferromagnetic state is a ground state.
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Appendix E
Derivation of the Cycloidal State Critical
Current

In Chapter 7, we give an approximate value for the applied current/effective spin velocity
required to create skyrmion/antiskyrmion pairs in the cycloidal state, which is given in
(7.6). Here, we provide a derivation of this critical current.

We consider solutions to the equations of motion of the fluctuations in a domain wall
(7.5) of the form of plane waves ξ = ξ0e

i(qx−ωt). For convenience, we define the variables

A = vx +
π

2
, (E.1a)

B =
√
2κ, (E.1b)

C =
2

λ2c
, (E.1c)

D =
π

2
+
√
2κ. (E.1d)

Multiplying the equations of motion (7.5a) and (7.5b) together gives the solution for ω

ω =
αi(2q2 + C/B +BD)− 2Aq

2(1 + α2)

±

√[
2Aq − αi

(
2q2 + C

B +BD
)]2

+ 4(1 + α2)
[
q4 + q2

(
BD + C

B

)
+ CD −A2q2

]
2(1 + α2)

.

(E.2)

We write the discriminant, a complex number, in terms of its modulus r and phase ϕ,
i.e.

ω =
αi(2q2 + C/B +BD)− 2Aq

2(1 + α2)
±

√
reiϕ

2(1 + α)2
. (E.3)

In order for the system to be stable, we require that Im(ω) < 0, so the critical case is
obtained by setting Im(ω) = 0, i.e.

α(2q2 + C/B +BD)±√
r sin

ϕ

2
= 0, (E.4)
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having used Im(
√
reiϕ) =

√
r sin(ϕ/2). Noting that sin(ϕ/2) = ±

√
(1− cosϕ)/2, where

r cosϕ is the real part of the discriminant, we can solve the above equation in the limit
of small damping by Taylor expanding

√
r sin(ϕ/2) to first order in α. This gives

α(2q2 + C/B +BD)± (B2D + 2Bq2 + C)Aαq√
B(Bq4 +BCD + (B2D + C)q2)

= 0. (E.5)

Minimising A (which is equal to vx + π/2) with respect to q gives q = 4
√
CD. Noting

that, for κ→ κc, i.e. the anisotropy at which the cycloidal wavelength diverges, λc → ∞.
Then, C → 0, and (E.5) reduces to A =

√
BD. Substituting back in the values from

(E.1) yields

vx =

√
2κc +

π

2

√
2κc −

π

2
≈ 0.65, (E.6)

corresponding to (7.6). The SageMath notebook used in this calculation is provided
below.
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[1]: %display latex

A = var('A')
B = var('B')
C = var('C')
D = var('D')
q = var('q')
alpha = var('alpha')

# Restrict physical quantities to be real

assume(A, 'real')
assume(B, 'real')
assume(C, 'real')
assume(D, 'real')
assume(q, 'real')
assume(alpha, 'real')

# Discriminant of the quadratic equation

dis = (2*A*q - alpha*i*(2*q^2 + C/B + B*D))^2 + 4*(1+alpha^2) * (q^4 +

↪→q^2*(B*D + C/B) + C*D - A^2 * q^2)

# Modulus of discriminant

r = sqrt(dis.real()^2 + dis.imag()^2)

# Discriminant is written as r*(cos(phi) + i*sin(phi))

cos_phi = dis.real() / r

sin_phi_2 = sqrt((1/2) * (1 - cos_phi))

Solve Im(ω) = 0 for A, which is equal to critical current plus a constant of π/2.

[2]: LHS = (sqrt(r) * sin_phi_2).taylor(alpha, 0, 2)

RHS = alpha * (2*q^2 + C/B + B*D)

[3]: solve(LHS==RHS, A)[0].simplify_full().factor()

[3]:

A =

√
Bq4 +BCD + (B2D + C)q2√

Bq

Minimise A with respect to q.

[4]: the_soln = sqrt(B*q^4 + (B^2*D + C)*q^2 + B*C*D) / (q * sqrt(B))

solve(the_soln.diff(q)==0, q)

[4]: [
q = i (CD)

1
4 , q = − (CD)

1
4 , q = −i (CD)

1
4 , q = (CD)

1
4

]
Plug this minimum value of q into the expression for A

[5]: the_soln(q=(C*D)^(1/4))

[5]:
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√
2BCD + (B2D + C)

√
CD

(CD)
1
4
√
B

Taking the limit C → 0 gives the result.
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Appendix F
Integration of Frustrated Magnet Skyrmion
Thiele Equations

In Chapter 11, we numerically integrate the equations of motion of the collective
coordinates skyrmion radius R and helicity η over time for many values of the applied
electric field amplitude E0 and frequency ω. In this Appendix, we provide the code
for this. We use SageMath [317], a free and open-source computer algebra system with
Python-like syntax, with which Python modules can be used. Listing F.1 performs the
integrations for 0 ≤ E0 ≤ 2 with a step size of 0.05 and 0 ≤ ω ≤ 4 with a step size of
0.02.

Obtaining the phase diagram Fig. 11.4(a) from the integration of the equations of motion
of the collective coordinates is computationally intensive, as there are 8241 points, each
of which represents an integration of (11.4) over dimensionless time t ≤ 0 ≤ 1000. As
such, we take measures to make the computation more efficient. After the variables
are defined, the various integrals over the radial coordinate ρ contained in (11.4) are
computed just once, and fitted to various functions using the optimize.curve_fit from
SciPy. The functions to which the integrals are fitted were chosen empirically, rather
than using physical considerations. The collective coordinate integrations for various
values of E0 are parallelised using the Pool object of Python’s multiprocessing library,
allowing the calculation to be distributed over many CPU cores. To further accelerate
the collective coordinate integration, we used a C function to calculate Ṙ and η̇, provided
in Listing F.2. This C code is called from the SageMath script using the ctypes library.
Compared to the code in Listing F.2 being written as a Python function, we found that
this approximately halved the time required for each time integration of the collective
coordinates.

1 import numpy as np

2 from scipy.optimize import curve_fit

3 from scipy.integrate import solve_ivp

4 from ctypes import c_double , cdll

5 from numpy.ctypeslib import ndpointer

6 import multiprocessing

7 from multiprocessing import Pool

8 import os

9

10

11 def linear_fit(R, m, c):
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12 return m*R + c

13

14 def inverse_linear_fit(R, a, b, c, d):

15 return a/(R-c) + b*(R-c) + d

16

17 def inverse_quadratic_linear_fit(R, a, b, c, d):

18 return a/R**2 + b/R + c + d*R

19

20 def quadratic_fit(R, a, b, c):

21 return a*R**2 + b*R + c

22

23 def inverse_fourth_order_fit(R, a, b, c, d, e, f):

24 return a/R**4 + b/R**3 + c/R**2 + d/R + e*R + f

25

26

27 # We use a C implementation of the time_derivatives function (called by

ODE solver) to speed up the integration

28 # Compile using gcc -fPIC -shared -o c_fit.o Fit.c

29 lib = cdll.LoadLibrary("./ c_fit.o")

30 CTimeDerivatives = lib.time_derivatives

31 CTimeDerivatives.restype = ndpointer(dtype=c_double , shape =(2,))

32

33

34 def get_thiele(Bz , E0 , alpha , omega):

35

36 #########################################################

37 # Use Total Skyrmion Energy to Calculate Optimal Radius #

38 #########################################################

39

40 # Finer mesh of value of skyrmion radii to more accurately obtain

that which minimises energy

41 R_finer = np.linspace(np.min(R_values), np.max(R_values), 1000)

42

43 # Arrays of various contributions to energies (obtained from the

fitting run at the start)

44 E_exchange_values = inverse_quadratic_linear_fit(R_finer ,

E_exchangeFitParams [0], E_exchangeFitParams [1], E_exchangeFitParams

[2], E_exchangeFitParams [3])

45 E_magnetic_values = -Bz * quadratic_fit(R_finer ,

E_magnetic_integralFitParams [0], E_magnetic_integralFitParams [1],

E_magnetic_integralFitParams [2])

46 E_electric_values = -E0 * linear_fit(R_finer ,

E_electric_integralFitParams [0], E_electric_integralFitParams [1])

47 E_values = E_exchange_values + E_magnetic_values - E_electric_values

48

49

50 def time_derivatives(t, y):

51

52 """

53 Wrapper for C function call; calculates dR_dt and d\eta_dt.

54 """

55

56 R, eta = y

57

58 Bz = Bz_array[np.argmin(np.abs(t - times))]

59 Ez = Ez_array[np.argmin(np.abs(t - times))]

60

61 return CTimeDerivatives(c_double(t), c_double(R), c_double(eta),

c_double(alpha), c_double(Ez), c_double(Bz), c_double(Gamma11FitParams

[0]), c_double(Gamma11FitParams [1]), c_double(Gamma11FitParams [2]),
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c_double(Gamma11FitParams [3]), c_double(Gamma22FitParams [0]), c_double

(Gamma22FitParams [1]), c_double(G12FitParams [0]), c_double(

G12FitParams [1]), c_double(F_RexFitParams [0]), c_double(F_RexFitParams

[1]), c_double(F_RexFitParams [2]), c_double(F_RexFitParams [3]),

c_double(F_RexFitParams [4]), c_double(F_RexFitParams [5]), c_double(

Xi1FitParams [0]), c_double(Xi1FitParams [1]), c_double(Xi1FitParams [2])

, c_double(Xi1FitParams [3]), c_double(Xi1FitParams [4]), c_double(

Xi1FitParams [5]), c_double(Xi2FitParams [0]), c_double(Xi2FitParams [1])

, c_double(Xi2FitParams [2]), c_double(Xi2FitParams [3]), c_double(

Xi2FitParams [4]), c_double(Xi2FitParams [5]), c_double(Xi3FitParams [0])

, c_double(Xi3FitParams [1]), c_double(Xi3FitParams [2]), c_double(

Xi3FitParams [3]), c_double(Xi3FitParams [4]), c_double(Xi3FitParams [5])

, c_double(Xi4FitParams [0]), c_double(Xi4FitParams [1]))

62

63 optimal_R = R_finer[np.argmin(E_values)] # Radius that minimises

energy

64 init = [optimal_R , np.pi] # Initial R and eta

65

66 # Magnetic field array (constant Bz in this case)

67 Bz_array = np.zeros_like(times , dtype=float)

68 Bz_array [:] = Bz

69

70 # Electric field array

71 Ez_array = np.zeros_like(times , dtype=float)

72 Ez_array [:] = E0 * cos(omega*times)

73

74 # Perform the time integration

75 sol = solve_ivp(time_derivatives , [np.min(times), np.max(times)],

init , t_eval=times , method="Radau")

76

77 return sol

78

79

80 def initialiser(over_directory_in , times_in , omega_values_in , Bz_in ,

E0_values_in , alpha_in , R_values_in , E_exchangeFitParams_in ,

E_magnetic_integralFitParams_in , E_electric_integralFitParams_in ,

Gamma11FitParams_in , Gamma22FitParams_in , G12FitParams_in ,

F_RexFitParams_in , Xi1FitParams_in , Xi2FitParams_in , Xi3FitParams_in ,

Xi4FitParams_in):

81

82 """

83 Called by each multiprocessing.Pool worker when it starts (to

initialise times , fields , fit parameters etc. for each thread).

84 See comment under section "Fit Quantities" for explanation of the

various values.

85 """

86

87 global over_directory

88 global times

89 global omega_values

90 global Bz

91 global E0_values

92 global alpha

93 global R_values

94 global E_exchangeFitParams

95 global E_magnetic_integralFitParams

96 global E_electric_integralFitParams

97 global Gamma11FitParams

98 global Gamma22FitParams

99 global G12FitParams
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100 global F_RexFitParams

101 global Xi1FitParams

102 global Xi2FitParams

103 global Xi3FitParams

104 global Xi4FitParams

105

106 over_directory = over_directory_in

107 times = times_in

108 omega_values = omega_values_in

109 Bz = Bz_in

110 E0_values = E0_values_in

111 alpha = alpha_in

112 R_values = R_values_in

113 E_exchangeFitParams = E_exchangeFitParams_in

114 E_magnetic_integralFitParams = E_magnetic_integralFitParams_in

115 E_electric_integralFitParams = E_electric_integralFitParams_in

116 Gamma11FitParams = Gamma11FitParams_in

117 Gamma22FitParams = Gamma22FitParams_in

118 G12FitParams = G12FitParams_in

119 F_RexFitParams = F_RexFitParams_in

120 Xi1FitParams = Xi1FitParams_in

121 Xi2FitParams = Xi2FitParams_in

122 Xi3FitParams = Xi3FitParams_in

123 Xi4FitParams = Xi4FitParams_in

124

125

126 def evolve(Eidx):

127

128 """

129 For the electric field input , loop through all omega values and

perform the integration.

130 This is the function called by each multiprocessing Pool process.

131 """

132

133 for omegaidx in range(len(omega_values)):

134

135 filename = "E0{:.2f}".format(E0_values[Eidx]) + "omega {:.2f}".

format(omega_values[omegaidx ])

136

137 sol = get_thiele(Bz , E0_values[Eidx], alpha , omega_values[

omegaidx ])

138 np.save(over_directory + "/R/E0{:.2f}".format(E0_values[Eidx]) +

"omega {:.2f}".format(omega_values[omegaidx ]), sol.y[0, :])

139 np.save(over_directory + "/eta/E0{:.2f}".format(E0_values[Eidx])

+ "omega {:.2f}".format(omega_values[omegaidx ]), sol.y[1, :])

140

141

142 if __name__ == "__main__":

143

144 over_directory = "CollectiveCoordinateData"

145

146 if not os.path.exists(over_directory):

147

148 os.mkdir(over_directory)

149 os.mkdir(over_directory + "/R")

150 os.mkdir(over_directory + "/eta")

151 os.mkdir(over_directory + "/General")

152

153

154 ##################################################################
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155 # Define Variables for Symbolic Algebra Required for Integration #

156 ##################################################################

157

158 # Here , the variables are defined , such as polar coordinate variables

, helicity etc.

159

160 rho = var("rho") # Polar coordinate radius

161 psi = var("psi") # Polar coordinate angle

162

163 m = var("m") # Skyrmion vorticity

164 eta = var("eta") # Skyrmion helicity

165 R = var("R") # Skyrmion radius

166 w = var("w") # Skyrmion domain wall width

167

168 # Theta and phi as in main text

169 theta = 2 * arctan(sinh(R/w) / sinh(rho/w))

170 phi = m*psi + eta

171

172 # Components of magnetization

173 mx = cos(phi) * sin(theta)

174 my = sin(phi) * sin(theta)

175 mz = cos(theta)

176

177 # Components of Laplacian in polar coordinates

178 mxLaplacian = diff(mx, rho , 2) + (1/rho) * diff(mx, rho) + (1/rho^2)

* diff(mx , psi , 2)

179 myLaplacian = diff(my, rho , 2) + (1/rho) * diff(my, rho) + (1/rho^2)

* diff(my , psi , 2)

180 mzLaplacian = diff(mz, rho , 2) + (1/rho) * diff(mz, rho) + (1/rho^2)

* diff(mz , psi , 2)

181

182 # (\ bnabla m)^2 term

183 quadratic_term = -mx*mxLaplacian - my*myLaplacian - mz*mzLaplacian

184 quadratic_term = quadratic_term.simplify_full ()

185

186 # (\ bnabla ^2 m)^2 term

187 mLaplacian = vector ([ mxLaplacian , myLaplacian , mzLaplacian ])

188 quartic_term = mLaplacian.dot_product(mLaplacian)

189 quartic_term = quartic_term.simplify_full ()

190

191 R_values = np.arange (0.5, 10, 0.1) # Array of

radii used for fitting

192 dtheta_dR = diff(theta , R) # d\theta/dR

193 dtheta_drho = diff(theta , rho) # d\theta/d\rho

194 d2theta_dRdrho = diff(dtheta_drho , R) # d^2\ theta/d\

rho^2

195 dE_2Integrand_dR = 0.5 * diff(rho*quadratic_term , R) # Derivative of

(\ bnabla m)^2 term with respect to R

196 dE_4Integrand_dR = 0.5 * diff(rho*quartic_term , R) # Derivative of

(\ bnabla ^2 m)^2 term with respect to R

197

198 dw_width = 1.4 # Domain wall width

199 rho_cutoff = 50 # Cutoff in integration over radius rho for

fitting

200

201 times = np.linspace(0, 1000, 10000)

202

203

204 ##################

205 # Fit Quantities #
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206 ##################

207

208 # G12 is the G_{R\eta} from the manuscript

209 # Gamma11 and Gamma22 are as in the manuscript where 1 is R and 2 is

\eta

210 # F_rex is -dU_ex / dR

211

212 # What I call Xi are parameters that show up in the analytical

expressions for the helicity -dependent

213 # parts of the generalised forces for the skyrmion profile ansatz we

use

214

215 # Xi1 is the integral of cos(2\ theta) d\theta / dR over \rho

216 # Xi2 is the integral of \rho * d^2\ theta / dRd\rho over \rho

217 # Xi3 is the integral of cos(\ theta)sin(\ theta) over \rho

218 # Xi4 is the integral of \rho * d\theta / d\rho over \rho

219

220 G12 = np.zeros_like(R_values , dtype=float)

221 Gamma11 = np.zeros_like(R_values , dtype=float)

222 Gamma22 = np.zeros_like(R_values , dtype=float)

223 F_Rex = np.zeros_like(R_values , dtype=float)

224 Xi1 = np.zeros_like(R_values , dtype=float)

225 Xi2 = np.zeros_like(R_values , dtype=float)

226 Xi3 = np.zeros_like(R_values , dtype=float)

227 Xi4 = np.zeros_like(R_values , dtype=float)

228

229 for i in range(len(R_values)):

230 G12[i] = numerical_integral(rho * np.sin(theta(R=R_values[i], w=

dw_width , m=1)) * dtheta_dR(R=R_values[i], w=dw_width , m=1), 0,

rho_cutoff)[0]

231 Gamma11[i] = numerical_integral(rho * dtheta_dR(R=R_values[i], w=

dw_width , m=1)^2, 0, rho_cutoff)[0]

232 Gamma22[i] = numerical_integral(rho * sin(theta(R=R_values[i], w=

dw_width , m=1))^2, 0, rho_cutoff)[0]

233 F_Rex[i] = numerical_integral(-dE_4Integrand_dR(R=R_values[i], w=

dw_width , m=1) + dE_2Integrand_dR(R=R_values[i], w=dw_width , m=1), 0,

rho_cutoff)[0]

234 Xi1[i] = numerical_integral(cos (2* theta(R=R_values[i], w=dw_width

, m=1)) * dtheta_dR(R=R_values[i], w=dw_width , m=1), 0, rho_cutoff)[0]

235 Xi2[i] = numerical_integral(rho * d2theta_dRdrho(R=R_values[i], w

=dw_width , m=1), 0, rho_cutoff)[0]

236 Xi3[i] = numerical_integral(cos(theta(R=R_values[i], w=dw_width ,

m=1)) * sin(theta(R=R_values[i], w=dw_width , m=1)), 0, rho_cutoff)[0]

237 Xi4[i] = numerical_integral(rho * dtheta_drho(R=R_values[i], w=

dw_width , m=1), 0, rho_cutoff)[0]

238

239

240 # The initial guesses p0 are chosen so that the solution converges , but

they are somewhat arbitrary

241 G12FitParams = curve_fit(linear_fit , R_values , G12 , p0=[2., 1.]) [0]

242 Gamma11FitParams = curve_fit(inverse_linear_fit , R_values , Gamma11 ,

p0=[1.17 , 1.5, 0, 0]) [0]

243 Gamma22FitParams = curve_fit(linear_fit , R_values , Gamma22 , p0=[3.,

-0.5])[0]

244 F_RexFitParams = curve_fit(inverse_fourth_order_fit , R_values , F_Rex ,

p0=[1.17 , 1.5, 1, 1, 1, 1]) [0]

245 Xi1FitParams = curve_fit(inverse_fourth_order_fit , R_values , Xi1 , p0

=[1.17 , 1.5, 1, 1, 1, 1])[0]

246 Xi2FitParams = curve_fit(inverse_fourth_order_fit , R_values , Xi2 , p0

=[1.17 , 1.5, 1, 1, 1, 1])[0]
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247 Xi3FitParams = curve_fit(inverse_fourth_order_fit , R_values , Xi3 , p0

=[1.17 , 1.5, 1, 1, 1, 1])[0]

248 Xi4FitParams = curve_fit(linear_fit , R_values , Xi4 , p0=[1.17 , 1.5])

[0]

249

250

251 ########################

252 # Fit Energy Integrals #

253 ########################

254

255 # Fit integrals of energy density over space to obtain fitting

parameters to use during time integration of collective coordinates

256

257 E_exchange = np.zeros_like(R_values , dtype=float)

258 E_magnetic_integral = np.zeros_like(R_values , dtype=float)

259 E_electric_integral = Xi3 + Xi4

260

261 for i in range(len(R_values)):

262 E_exchange[i] = numerical_integral ( -0.5*rho*

quadratic_term(R=R_values[i], w=dw_width , m=1) + 0.5* rho*quartic_term(

R=R_values[i], w=dw_width , m=1), 0, rho_cutoff)[0]

263 E_magnetic_integral[i] = numerical_integral(rho*(mz(R=R_values[i

], w=dw_width , m=1) -1), 0, rho_cutoff)[0]

264

265 E_exchangeFitParams = curve_fit(inverse_quadratic_linear_fit

, R_values , E_exchange , p0=[1.17 , 1.5, 0, 1])[0]

266 E_magnetic_integralFitParams = curve_fit(quadratic_fit , R_values ,

E_magnetic_integral , p0=[1.17 , 1.5, 0]) [0]

267 E_electric_integralFitParams = curve_fit(linear_fit , R_values ,

E_electric_integral , p0=[1.17 , 1.5]) [0]

268

269 # Array of electric field amplitude and angular frequency , each pair

of which the collective coordinates are integrated

270 E0_values = np.arange (0., 2.05, 0.05)

271 omega_values = np.arange (0., 4.02, 0.02)

272

273 Bz = 1. # Magnetic field along z-axis

274 alpha = 0.01 # Gilbert damping constant

275

276 # Perform the collective coordinate integrations in parallel

277 with Pool(multiprocessing.cpu_count (), initialiser , initargs =(

over_directory , times , omega_values , Bz, E0_values , alpha , R_values ,

E_exchangeFitParams , E_magnetic_integralFitParams ,

E_electric_integralFitParams , Gamma11FitParams , Gamma22FitParams ,

G12FitParams , F_RexFitParams , Xi1FitParams , Xi2FitParams , Xi3FitParams

, Xi4FitParams)) as p:

278

279 p.map(evolve , [Eidx for Eidx in range(len(E0_values))])

Listing F.1: SageMath code to integrate the Thiele equation for radius and helicity of a
skyrmion in a frustrated magnet for many values of electric field amplitude
and frequency.

1 /*

2 C functions to calculate d/dt(R) and d/dt(eta), as this is faster than

using Python functions (approximately halved

3 the time required to obtain the phase diagram in my testing)

4

5 Called by CCIntegration.sage
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6

7 Must be compiled prior to running CCIntegration.sage with

8 gcc -fPIC -shared -o c_fit.o Fit.c

9 */

10

11 #include <stdlib.h>

12 #include <math.h>

13

14

15 // //////////////////////////

16 // Define Fits to Be Used //

17 // //////////////////////////

18

19 double * inverse_fourth_order_fit_array(const double * arr , int N, double

a, double b, double c, double d, double e, double f)

20 {

21 double * result = (double *) malloc(sizeof(double) * N);

22 for (int i=0; i<N; i++)

23 {

24 double R = arr[i];

25 result[i] = a/(R*R*R*R) + b/(R*R*R) + c/(R*R) + d/R + f + e*R;

26 }

27 return result;

28 }

29

30 double inverse_fourth_order_fit(const double R, double a, double b,

double c, double d, double e, double f)

31 {

32 return (1/(R*R)) * (a/(R*R) + b/R + c) + d/R + f + e*R;

33 }

34

35 double linear_fit(const double R, double m, double c)

36 {

37 return m*R + c;

38 }

39

40 double inverse_linear_fit(const double R, double a, double b, double c,

double d)

41 {

42 return a/(R-c) + b*(R-c) + d;

43 }

44

45 double inverse_quadratic_linear_fit(const double R, double a, double b,

double c, double d)

46 {

47 return a/(R*R) + b/R + c + d*R;

48 }

49

50 double quadratic_fit(const double R, double a, double b, double c)

51 {

52 return a*R*R + b*R + c;

53 }

54

55

56 // /////////////////////////////////////////

57 // Function Returning dR/dt and d\eta/dt //

58 // /////////////////////////////////////////

59

60 double * time_derivatives(double t, double R, double eta , double alpha ,

double Ez, double Bz, double Gamma11ParamA , double Gamma11ParamB ,
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double Gamma11ParamC , double Gamma11ParamD , double Gamma22ParamA ,

double Gamma22ParamB , double G12FitParamA , double G12FitParamB , double

F_RexFitParamA , double F_RexFitParamB , double F_RexFitParamC , double

F_RexFitParamD , double F_RexFitParamE , double F_RexFitParamF , double

Xi1FitParamA , double Xi1FitParamB , double Xi1FitParamC , double

Xi1FitParamD , double Xi1FitParamE , double Xi1FitParamF , double

Xi2FitParamA , double Xi2FitParamB , double Xi2FitParamC , double

Xi2FitParamD , double Xi2FitParamE , double Xi2FitParamF , double

Xi3FitParamA , double Xi3FitParamB , double Xi3FitParamC , double

Xi3FitParamD , double Xi3FitParamE , double Xi3FitParamF , double

Xi4FitParamA , double Xi4FitParamB)

61 {

62

63 // t is time

64 // R is skyrmion radius

65 // \eta is skyrmion helicity

66 // alpha is Gilbert damping constant

67 // Ez is electric field

68 // Bz is magnetic field

69 // Gamma11 <A,B,C,D> are the fit parameters for the dissipative tensor

\Gamma_RR

70 // Gamma22 <A,B> are the fit parameters for the dissipative tensor \

Gamma_\eta\eta

71 // F_RexFitParam <A,B,C,D,E,F> are the fit parameters for -dU_ex/DR

72 // Xi1FitParams <A,B,C,D,E,F> are the fit parameters for the integral

of cos (2\ theta) d\theta / dR over \rho

73 // X12FitParams <A,B,C,D,E,F> are the fit parameters for the integral

of \rho * d^2\ theta / dRd\rho over \rho

74 // Xi3FitParams <A,B,C,D,E,F> are the fit parameters for the integral

of cos(\theta)sin(\theta) over \rho

75 // Xi4FitParams <A,B> are the fit parameters for the integral of \rho

* d\theta / d\rho over \rho

76

77 // Obtain the quantities described above from their fits

78 double Gamma11 = alpha * inverse_linear_fit(R, Gamma11ParamA ,

Gamma11ParamB , Gamma11ParamC , Gamma11ParamD);

79 double Gamma22 = alpha * linear_fit(R, Gamma22ParamA , Gamma22ParamB);

80 double G12 = linear_fit(R, G12FitParamA , G12FitParamB);

81 double F_Rex = inverse_fourth_order_fit(R, F_RexFitParamA ,

F_RexFitParamB , F_RexFitParamC , F_RexFitParamD , F_RexFitParamE ,

F_RexFitParamF);

82 double Xi1 = inverse_fourth_order_fit(R, Xi1FitParamA , Xi1FitParamB ,

Xi1FitParamC , Xi1FitParamD , Xi1FitParamE , Xi1FitParamF);

83 double Xi2 = inverse_fourth_order_fit(R, Xi2FitParamA , Xi2FitParamB ,

Xi2FitParamC , Xi2FitParamD , Xi2FitParamE , Xi2FitParamF);

84 double Xi3 = inverse_fourth_order_fit(R, Xi3FitParamA , Xi3FitParamB ,

Xi3FitParamC , Xi3FitParamD , Xi3FitParamE , Xi3FitParamF);

85 double Xi4 = linear_fit(R, Xi4FitParamA , Xi4FitParamB);

86

87 double F_R = F_Rex - Bz*G12 + Ez*cos(eta)*(Xi1 + Xi2);

88 double F_eta = -Ez*sin(eta)*(Xi3 + Xi4);

89

90 // The prefactor for both \dot{R} and \dot{\eta}

91 double prefactor = 1 / (G12*G12 + Gamma11*Gamma22);

92

93 double * return_array = (double *) malloc(sizeof(double) * 2);

94

95 return_array [0] = prefactor * (Gamma22*F_R + G12*F_eta);

96 return_array [1] = prefactor * (Gamma11*F_eta - G12*F_R);

97
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98 return return_array;

99

100 }

Listing F.2: C code used to calculate the time derivatives of the collective coordinates
given the fit parameters.
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94B. Göbel et al., ‘Topological Hall Signatures of Magnetic Hopfions’, Phys. Rev.
Research 2, 013315 (2020).

95S. S. Pershoguba, D. Andreoli and J. Zang, ‘Electronic Scattering off a Magnetic
Hopfion’, Phys. Rev. B 104, 075102 (2021).

96Z. Zhang et al., ‘Magnon Scattering Modulated by Omnidirectional Hopfion Motion
in Antiferromagnets for Meta-Learning’, Sci. Adv. 9, eade7439 (2023).

97C. Saji et al., ‘Hopfion-Driven Magnonic Hall Effect and Magnonic Focusing’, Phys.
Rev. Lett. 131, 166702 (2023).

98L. Bo et al., ‘Spin Excitation Spectrum of a Magnetic Hopfion’, Appl. Phys. Lett.
119, 212408 (2021).

99D. Raftrey and P. Fischer, ‘Field-Driven Dynamics of Magnetic Hopfions’, Phys. Rev.
Lett. 127, 257201 (2021).

151

https://doi.org/10.1038/s41467-020-16258-w
https://doi.org/10.1038/s41467-020-16258-w
https://doi.org/10.1038/387058a0
https://doi.org/10.1098/rspa.2007.0038
https://doi.org/10.1098/rspa.2007.0038
https://www.mathnet.ru/eng/dan42751
https://doi.org/10.1063/5.0099942
https://doi.org/10.1016/0375-9601(88)90049-7
https://doi.org/10.1016/S0304-8853(02)00388-8
https://doi.org/10.1063/1.480097
https://doi.org/10.1063/1.480097
https://doi.org/10.1088/1751-8121/aad521
https://doi.org/10.1103/PhysRevLett.121.187201
https://doi.org/10.1103/PhysRevLett.121.187201
https://doi.org/10.1038/nature23006
https://doi.org/10.1038/s41567-020-01057-3
https://doi.org/10.1038/s41467-021-21846-5
https://doi.org/10.1038/s41586-023-06658-5
https://doi.org/10.1038/s41586-023-06658-5
https://doi.org/10.1103/PhysRevResearch.2.013315
https://doi.org/10.1103/PhysRevResearch.2.013315
https://doi.org/10.1103/PhysRevB.104.075102
https://doi.org/10.1126/sciadv.ade7439
https://doi.org/10.1103/PhysRevLett.131.166702
https://doi.org/10.1103/PhysRevLett.131.166702
https://doi.org/10.1063/5.0072349
https://doi.org/10.1063/5.0072349
https://doi.org/10.1103/PhysRevLett.127.257201
https://doi.org/10.1103/PhysRevLett.127.257201


Bibliography

100K. Sobucki et al., ‘Magnon Spectrum of Bloch Hopfion Beyond Ferromagnetic Res-
onance’, APL Mater. 10, 091103 (2022).

101Z. Khodzhaev and E. Turgut, ‘Hopfion Dynamics in Chiral Magnets’, J. Phys.
Condens. Matter 34, 225805 (2022).

102X. S. Wang, A. Qaiumzadeh and A. Brataas, ‘Current-Driven Dynamics of Magnetic
Hopfions’, Phys. Rev. Lett. 123, 147203 (2019).
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