Density functional theory studies at a Fe(II) spin-crossover complex

 $G.$ Kämmerer¹, P. Kratzer¹

 $^{-1}$ Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany

UNIVERSITÄT DUSBURG

Offen im Denken

We gratefully acknowledge the second

funding by the German Research

Foundation via the CRC1242

Scientific Questions

Why do we want to investigate?

- Spin-crossover molecules are interesting for data storage and digital display due to spin state switching and changing the refractive index.
- Try understanding the switching mechanism triggered by external stimuli[[1,](#page-0-0) [2\]](#page-0-1).
- Investigate the changes in bond lengths and the associated electronic structure.
- On which timescale do those changes appear? Look inside the switching dynamics.

-
- \rightarrow X-Ray absorption spectroscopy (XAS) can distinguish between molecules' LS and HS states by splitting the L_3 -peak.
- \rightarrow Pump-probe experiments enable to study of the dynamics of switching.
- A criterion for future applications as a solid: Abrupt phase transition with switching between LS and HS.

Schematic Energy States

Spin-Crossover

Spin-crossover molecules (SCO):

- Spin switching from a low-spin (LS, $S = 0$) to a high-spin (HS, $S = 2$) state due to external stimuli, e.g., light, pressure, temperature, X-rays [\[3,](#page-0-2) [4\]](#page-0-3).
	- \rightarrow Expansion of Fe-N bond length from LS to HS

Pyriding $\frac{1}{\sqrt{2}}$ Functional: B3LYP [\[6\]](#page-0-5) Working Assumptions:

- Single-molecule, no crystal
- Static DFT is sufficient
- Hybrid functional works well

Potential Energy Surfaces

Symmetric Octahedral ligand field Asymmetric Octahedral Ligand Field

Figure: Ligand Fields of a symmetric and asymmetric environment; top: symmetric octahedron, middle: asymmetric octahedron, bottom: octahedron for both structures (vol HS/vol LS:1.30)

LS HS

Calculation Methods

Density functional theory (DFT) calculations:

Code: FHI-Aims Code [\[5\]](#page-0-4):

- Ab initio all-electron full-potential electronic structure code
- Based on numeric atom-centered orbitals

Fe(II)-Complex

Our Molecule:

- Fe(II)-core in a surrounding octahedral nitrogen
- Complex includes 2 1-pyrroline (pyrrole) and 4 pyridine rings
	- Pyridine rings C_5H_5N (6 -membered ring)
	- Pyrrole rings C_4H_4N (5 membered ring)
	- Asymmetric structure repeals the octahedral degeneracy
- Spin state switching elongates the Fe-N bond and distortion of the nitrogen octahedron.
	- Rotation of one ligand concerning each other about the iron atom
	- Twist of the plane of one ligand about Fe-N (pyridine)

Figure: Comparison of LS- and HS-state bondings

Bonding Length and Angles

Comparison of LS and HS:

- Structural differences between HS and LS
- Asymmetric bonding for Fe-N for pyrrole and pyridine
- LS and HS are asymmetric

Table: Simulated bond lengths

Table: Simulated angles[◦] in octahedral environment

Figure: Comparison of LS-/MS- and HS-state with different generalized Fe-N distances

Conclusion and Outlook

Conclusion:

- Increase of bond length and decrease of bonding angle from LS to HS (geometrical switching).
- Identification of the pyridine and pyrrole Fe-C and C-C bonding differences. Note: No symmetric bonds in B3LYP
- \Rightarrow Qualitative description of switching mechanism through DFT calculations. **Outlook:**
- Calculating and investigating XAS features for a deeper understanding.
- Comparison of lifetime of states and simulation of the time dependency.

References

[1] B. Weber et al., Angew. Chemie - Int. Ed. **2008**, 47, 10098–10101. [2] E. Breuning et al., Angew. Chem. Int. Ed. Engl. **2000**, 39, 2504–2507. [3] O. Kahn et al., Science (80-.). **1998**, 279, 44–48. [4] M. A. Halcrow, Coord. Chem. Rev. **2009**, 253, 2493–2514. [5] V. Blum et al., Comput. Phys. Commun. **2009**, 180, 2175–2196. [6] J. P. Perdew et al., Phys. Rev. Lett. **1996**, 77, 3865–3868.