Density functional theory studies at a Fe(II) spin-crossover complex

G. Kämmerer¹, P. Kratzer¹

¹ Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Scientific Questions

Why do we want to investigate?

- Spin-crossover molecules are interesting for data storage and digital display due to spin state switching and changing the refractive index.
- Try understanding the switching mechanism triggered by external stimuli[1, 2].
- Investigate the changes in bond lengths and the associated electronic structure.
- On which timescale do those changes appear? Look inside the switching dynamics.

Spin-Crossover

Spin-crossover molecules (SCO):

- Spin switching from a low-spin (LS, S = 0) to a high-spin (HS, S = 2) state due to external stimuli, e.g., light, pressure, temperature, X-rays [3, 4].
 - \rightarrow Expansion of Fe-N bond length from LS to HS

Fe(II)-Complex

Our Molecule:

- Fe(II)-core in a surrounding octahedral nitrogen
- Complex includes 2 1-pyrroline (pyrrole) and 4 pyridine rings
- Pyridine rings C₅H₅N (6 -membered ring)
- Pyrrole rings C₄H₄N (5 membered ring)
- Asymmetric structure repeals the octahedral degeneracy
- Spin state switching elongates the Fe-N bond and distortion of the nitrogen octahedron.
 - Rotation of one ligand concerning each other about the iron atom
 - Twist of the plane of one ligand about Fe-N (pyridine)

- \rightarrow X-Ray absorption spectroscopy (XAS) can distinguish between molecules' LS and HS states by splitting the L₃-peak.
- \rightarrow Pump-probe experiments enable to study of the dynamics of switching.
- A criterion for future applications as a solid: Abrupt phase transition with switching between LS and HS.

Schematic Energy States

Figure: Comparison of LS- and HS-state bondings

Bonding Length and Angles

Table: Simulated bond lengths

Bonding	(LS)[Å]	(HS)[Å]
Fe-N(pyridine)1	1.922	2.169
Fe-N(pyridine)2	1.922	2.169
Fe-N(pyridine)3	2.015	2.315
Fe-N(pyridine)4	2.015	2.315
Fe-N(pyrrole)5	1.989	2.093
Fe-N(pyrrole)6	1.990	2.093

Comparison of LS and HS:

- Structural differences between HS and LS
- Asymmetric bonding for Fe-N for pyrrole and pyridine
- LS and HS are asymmetric

Table: Simulated angles^[°] in octahedral environment

Bonding	$(LS)[^{\circ}]$	$(HS)[^{\circ}]$
N(pyridine)1-Fe-N(pyridine)2	179.98	153.78
N(pyridine)2-Fe-N(pyrrole)6	160.65	147.40
N(pyridine)3-Fe-N(pyrrole)5	160.64	147.41
N(pyridine)2-Fe-N(pyridine)3	79.78	70.88
N(pyridine)1-Fe-N(pyridine)4	79.79	70.88
N(pyridine)2-Fe-N(pyrrole)5	80.87	76.53

Asymmetric Octahedral Ligand Field

Potential Energy Surfaces

Figure: Comparison of LS-/MS- and HS-state with different generalized Fe-N distances

Conclusion and Outlook

Conclusion:

Figure: Ligand Fields of a symmetric and asymmetric environment; top: symmetric octahedron, middle: asymmetric octahedron, bottom: octahedron for both structures (vol HS/vol LS:1.30)

Calculation Methods

Density functional theory (DFT) calculations:

LS

Code: FHI-Aims Code [5]:

- Ab initio all-electron full-potential electronic structure code
- Based on numeric atom-centered orbitals

Functional: B3LYP [6] Working Assumptions:

• Single-molecule, no crystal

HS

- Static DFT is sufficient
- Hybrid functional works well

- Increase of bond length and decrease of bonding angle from LS to HS (geometrical switching).
- Identification of the pyridine and pyrrole Fe-C and C-C bonding differences. Note: No symmetric bonds in B3LYP
- \Rightarrow Qualitative description of switching mechanism through DFT calculations. **Outlook:**
- Calculating and investigating XAS features for a deeper understanding.
- Comparison of lifetime of states and simulation of the time dependency.

References

[1] B. Weber et al., Angew. Chemie - Int. Ed. 2008, 47, 10098–10101. [2] E. Breuning et al., Angew. Chem. Int. Ed. Engl. 2000, 39, 2504–2507. [3] O. Kahn et al., *Science (80-.).* **1998**, *279*, 44–48. [4] M. A. Halcrow, *Coord. Chem. Rev.* **2009**, *253*, 2493–2514. [5] V. Blum et al., Comput. Phys. Commun. 2009, 180, 2175–2196. [6] J. P. Perdew et al., *Phys. Rev. Lett.* **1996**, *77*, 3865–3868.