Gallery
Pulverized coal combustion
Illustration of oxygen mass fraction in the mid axial section of a large-scale laboratory furnace (diameter = 600 mm).
LES of pulverized coal combustion in a large-scale laboratory furnace
The picture shows coal particles coloured by temperature [K] and with
size scaled to the diameter. The computational domain is 1200 mm long and has a
width of 600 mm. Particles are injected at room temperature and are decelerated in
the internal recirculation zone until eventually reverse their direction of
movement. As particles heat and combustion proceeds the diameter of the particles
decreases.
Pulverized Coal Combustion
Illustration of the carbon dioxide content near the burner area.
Tomographic reconstruction of the instantaneous 3D chemiluminescence field of a highly turbulent swirl-stabilised flame
Sydney swirl flame
Illustration of OH.
Oliver Stein, Andreas M. Kempf and Johannes Janicka, Les of the Sydney Swirl Flame Series: An initial investigation of the fluid dynamics (2007), in: Combustion Science and Technology, 179(173-189)
Sydney Bluff-Body Flamme
Kempf, A., Lindstedt, R.P., and Janicka, J. (2006) LES of a bluff-body stabilised non-premixed flame. Combust. Flame, 144, 170–189.
Darmstadt geschichtete Flamme
DNS des Cambridge Brenners
Visualisierung von instantanen Ergebnissesn der 1.6 Milliarden Zellen DNS des Cambridge Brenners. Links: Iso-q-Kriterium eingefärbt mit der axialen Geschwindigkeitskomponente. Rechts: Konturen des reziproken Verbrennungsluftverhältnisses, überlagert ist die Isofläche für einen Wert der dimensionslosen Fortschritts-Variable von C=0.5.
Iso-Oberfläche des Verbrennungsluftverhältnisses der Cambridge geschichteten Flamme
DNS of the Cambridge stratified burner
Axial velocity component (U) from the 1.6 billion cell DNS of the Cambridge stratified burner.
DNS of the Cambridge stratified burner
Mixture fraction (F) from the 1.6 billion cell DNS of the Cambridge stratified burner.
Mischungsanteile
in einem 4-Ventil Motor
während des Einlasstakts
Pulsed-Jet
A single pulse of a gas-jet is investigated to improve the insights into the injection process in direct-injection internal combustion engines. The jet investigated here consists of a tracer gas only, to investigate the fluid dynamics of jet break up, the evolution of turbulence, and jet impingement on the wall. The simulation was performed with the inhouse PsiPhi code, using a grid of 1,000,000,000 finite volumes, distributed on 1,000 cores of the CCSS Cray. The simulation is based on the Large-Eddy Simulation approach, where the effect of small turbulent structures (eddies), that can no longer be resolved by the computational grid, is modelled through a turbulent viscosity that represents the enhanced momentum exchange due to turbulence.
Progress variable source term in a 4-valve engine, during the power stroke.
Combustion progress in a 4-valve engine, during the power stroke.
Zwei-Dimensionaler
"turbulenter" Strahl
Cambridge Stratified Flame
The image shows a cross section through the progress variable field inside the Cambridge bluff body, calculated by LES. The inhouse PsiPhi code was used in combination with a Flame Surface Density approach and a mixture fraction dependent laminar flame speed. A total of over 100 million cells was used for this simulation (every pixel corresponds to a cell).
LES of high frequency thermoacoustic in a generic combustion chamber
To study the high frequency thermoacoustic a generic combustor is designed, which shows the first radial mode with the frequency of almost 6 kHz. The movie illustrates the phased avarage pressure oscillation in the combustion chamber.
Plasmareaktor
Untersuchung eines Plasmareaktors (auf eventuelle Rückströmungen, Effektivität des Hüllgasstroms). Die Abbildung zeigt Stromlinien, wobei Stromlinien des Trägergases bunt dargestellt (Farbe=Geschwindigkeit) und der Hüllgasstrom in orange dargestellt werden.
Flammenreaktor
Untersuchung der Strömung im Flammenreaktor und Einfluss des Auftriebs und der Strömung auf Partikelmessungen im Reaktor. Die Abbildung zeigt Contourplot der Temperaturverteilung und Stromlinien in dem Niederdruck-Flammenreaktor.
Heißwandreaktor
Flat flame in low pressure reactor
Comparison between the measured and the computed temperature of the investigated flame. Left: Temperature field (without HMDSO) of the reactor. Right top: temperature (without HMDSO) along the centerline as a function of HAB. Right bottom: enlarged zone form 0 to 45 mm HAB for the temperature of flame doped with varied HMDSO concentration.