© UDE

Prof. Dr.Matti Schneider

Institutsleiter

Kontakt

Raum: V15 R04 H23 (Anfahrt)
Tel.: +49 201 - 183 6501
matti.schneider@uni-due.de

Anschrift

Universität Duisburg-Essen
Abteilung Bauwissenschaften
Institut für Ingenieurmathematik
Universitätsstr. 2
45141 Essen
V15 R04 H23

Lehrveranstaltungen

WiSe 24/25

  • Mathematik 1 für Bauwissenschaften
  • Computational Micromechanics
  • Nonlinear Optimization Methods

SoSe 24

  • Mathematik 2 für Bauwissenschaften
  • Digital Microstructure Characterization and Modeling

WiSe 23/24

  • Mathematik 1 für Bauwissenschaften
  • Computational Micromechanics
  • Nonlinear Optimization Methods

Aktuelle Publikationen

    2024

  • Jabs, Lukas; Schneider, Matti
    A consistent discretization via the finite radon transform for FFT-based computational micromechanics
    In: Computational Mechanics (2024) in press
  • Lauff, Celine; Schneider, Matti; Montesano, John; Böhlke, Thomas
    Generating microstructures of long fiber reinforced composites by the fused sequential addition and migration method
    In: International Journal for Numerical Methods in Engineering Jg. 125 (2024) Nr. 22, e7573
  • Mehta, Alok; Schneider, Matti
    A maximum-entropy length-orientation closure for short-fiber reinforced composites
    In: Computational Mechanics Jg. 74 (2024) S. 615 - 640
  • Dey, Argha Protim; Welschinger, Fabian; Schneider, Matti; Köbler, Jonathan; Böhlke, Thomas
    On the effectiveness of deep material networks for the multi-scale virtual characterization of short fiber-reinforced thermoplastics under highly nonlinear load cases
    In: Archive of Applied Mechanics Jg. 94 (2024) Nr. 5, S. 1177 - 1202
  • Risthaus, Lennart; Schneider, Matti
    Imposing different boundary conditions for thermal computational homogenization problems with FFT- and tensor-train-based Green's operator methods
    In: International Journal for Numerical Methods in Engineering Jg. 125 (2024) Nr. 7, e7423
  • Lendvai, Jonas; Schneider, Matti
    Assumed strain methods in micromechanics, laminate composite voxels and level sets
    In: International Journal for Numerical Methods in Engineering Jg. 125 (2024) Nr. 11, e7459
  • Risthaus, Lennart; Schneider, Matti
    Imposing Dirichlet boundary conditions directly for FFT-based computational micromechanics
    In: Computational Mechanics (2024) in press
  • Kabel, Matthias; Schneider, Matti
    Adaptive material evaluation by stabilized octree and sandwich coarsening in FFT-based computational micromechanics
    In: International Journal for Numerical Methods in Engineering Jg. 125 (2024) Nr. 5, e7399
  • Risthaus, Lennart; Schneider, Matti
    FFT-based computational micromechanics with Dirichlet boundary conditions on the rotated staggered grid
    In: International Journal for Numerical Methods in Engineering Jg. 125 (2024) Nr. 21, e7569
  • Sterr, Benedikt; Hrymak, Andrew; Schneider, Matti; Böhlke, Thomas
    Machine learning assisted discovery of effective viscous material laws for shear-thinning fiber suspensions
    In: Computational Mechanics (2024) in press
  • 2023

  • Ernesti, Felix; Schneider, Matti; Winter, Steffen; Hug, Daniel; Last, Günter; Böhlke, Thomas
    Characterizing digital microstructures by the Minkowski-based quadratic normal tensor
    In: Mathematical Methods in the Applied Sciences Jg. 46 (2023) Nr. 1, S. 961 - 985
  • Gajek, Sebastian; Schneider, Matti; Böhlke, Thomas;
    Material‐informed training of viscoelastic deep material networks
    92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), 15.-19.08.2022, Aachen,
    In: Proceedings in Applied Mathematics and Mechanics (PAMM) Jg. 22 (2023) Nr. 1, Special Issue: 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), e202200143
  • Ernesti, Felix; Schneider, Matti
    Accounting for weak interfaces in computing the effective crack energy of heterogeneous materials using the composite voxel technique
    In: Archive of Applied Mechanics Jg. 93 (2023) Nr. 10, S. 3983 - 4008
  • Magino, Nicola; Köbler, Jonathan; Andrä, Heiko; Welschinger, Fabian; Müller, Ralf; Schneider, Matti;
    Factors influencing the dynamic stiffness in short‐fiber reinforced polymers
    GAMM: 92nd Annual Meeting, 15.-19.08.2022, Aachen,
    In: Proceedings in Applied Mathematics and Mechanics (PAMM) Jg. 22 (2023) Nr. 1, Special Issue: 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), e202200071
  • Dey, Argha Protim; Welschinger, Fabian; Schneider, Matti; Gajek, Sebastian; Böhlke, Thomas
    Rapid inverse calibration of a multiscale model for the viscoplastic and creep behavior of short fiber-reinforced thermoplastics based on Deep Material Networks
    In: International Journal of Plasticity Jg. 160 (2023) 103484
  • Lauff, Celine; Schneider, Matti; Montesano, John; Böhlke, Thomas
    An orientation corrected shaking method for the microstructure generation of short fiber-reinforced composites with almost planar fiber orientation
    In: Composite Structures Jg. 322 (2023) 117352
  • Ernesti, Felix; Lendvai, Jonas; Schneider, Matti
    Investigations on the influence of the boundary conditions when computing the effective crack energy of random heterogeneous materials using fast marching methods
    In: Computational Mechanics Jg. 71 (2023) Nr. 2, S. 277 - 293
  • Meyer, Nils; Gajek, Sebastian; Görthofer, Johannes; Hrymak, Andrew; Kärger, Luise; Henning, Frank; Schneider, Matti; Böhlke, Thomas
    A probabilistic virtual process chain to quantify process-induced uncertainties in Sheet Molding Compounds
    In: Composites Part B: Engineering Jg. 249 (2023) 110380
  • Magino, Nicola; Köbler, Jonathan; Andrä, Heiko; Welschinger, Fabian; Müller, Ralf; Schneider, Matti
    Accounting for viscoelastic effects in a multiscale fatigue model for the degradation of the dynamic stiffness of short-fiber reinforced thermoplastics
    In: Computational Mechanics Jg. 71 (2023) Nr. 3, S. 493 - 515
  • Sterr, Benedikt; Wicht, Daniel; Hrymak, Andrew; Schneider, Matti; Böhlke, Thomas
    Homogenizing the viscosity of shear-thinning fiber suspensions with an FFT-based computational method
    In: Journal of Non-Newtonian Fluid Mechanics Jg. 321 (2023) 105101
  • Karl, Tobias; Schneider, Matti; Böhlke, Thomas
    On fully symmetric implicit closure approximations for fiber orientation tensors
    In: Journal of Non-Newtonian Fluid Mechanics (2023) Nr. 318, 105049
  • Bauer, Julian Karl; Schneider, Matti; Böhlke, Thomas
    On the Phase Space of Fourth-Order Fiber-Orientation Tensors
    In: Journal of Elasticity Jg. 153 (2023) Nr. 2, S. 161 - 184
  • Risthaus, Lennart; Schneider, Matti;
    Solving phase‐field fracture problems in the tensor train format
    GAMM: 92nd Annual Meeting, 15.-19.08.2022, Aachen,
    In: Proceedings in Applied Mathematics and Mechanics (PAMM) Jg. 22 (2023) Nr. 1, Heft 1, Special Issue: 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), e202200098
  • Schneider, Matti
    On the effectiveness of the Moulinec–Suquet discretization for composite materials
    In: International Journal for Numerical Methods in Engineering Jg. 124 (2023) Nr. 14, S. 3191 - 3218
  • Schneider, Matti; Wicht, Daniel
    Superconvergence of the effective Cauchy stress in computational homogenization of inelastic materials
    In: International Journal for Numerical Methods in Engineering Jg. 124 (2023) Nr. 4, S. 959 - 978

Forschungsschwerpunkte

  • FFT-basierte numerische Homogenisierungsverfahren
  • Mikrostrukturerzeugung
  • Mikrostrukturcharakterisierung

Curriculum Vitae

seit 09/2023 Univ.-Professor für Ingenieurmathematik, Universität Duisburg-Essen
09/2017-08/2023 Juniorprofessor für Computational Micromechanics, Karlsruher Institut für
Technologie (KIT)
07/2015-08/2017 Wissenschaftlicher Mitarbeiter, Fraunhofer ITWM Kaiserslautern, Abteilung
Strömungs- und Materialsimulation
02/2013-06/2015 Wissenschaftlicher Mitarbeiter am Institut für Strukturleichtbau, TU Chemnitz
01/2013 Promotion an der Universität Leipzig, Titel: The Leray-Serre spectral sequence in Morse homology on Hilbert manifolds and in Floer homology on cotangent bundles
09/2012-01/2013 Wissenschaftlicher Mitarbeiter, Abteilung Strömungs- und Materialsimulation,
Fraunhofer ITWM Kaiserslautern
04/2009-08/2012 Promotionsstipendat der International Max-Planck Research School, Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig
10/2004-01/2009 Studium Angewandte Mathematik, TU Bergakademie Freiberg, Diplom mit Auszeichnung