Veröffentlichungen von Paola Pozzi
Publikationen und Preprints:
- F. Cagliari, M. Ferri and P. Pozzi
Size functions from a categorical viewpoint
Acta Appl. Math. 67 (2001), no. 3, 225-235. https://doi.org/10.1023/A:1011923819754 - P. Pozzi
L2- estimate for the discrete Plateau Problem
Math. Comp. 73 (2004), no. 248, 1763-1777. https://doi.org/10.1090/S0025-5718-03-01630-2 - P. Pozzi
The discrete Douglas Problem: theory and numerics
Interfaces Free Bound. 6 (2004), no. 2, 219-252. https://www.ems-ph.org/journals/show_abstract.php?issn=1463-9963&vol=6&iss=2&rank=4 - P. Pozzi
The discrete Douglas Problem: convergence results
IMA J. Numer. Anal. 25 (2005), no. 2, 337-378. https://doi.org/10.1093/imanum/drh019 - M. Hegland and P. Pozzi
Concentration of measure and the approximation of functions of many variables
Mathematical methods for curves and surfaces: Tromsø, 2004, 199-212,
Mod. Methods Math., Nashboro Press, Brentwood, TN, 2005. http://hdl.handle.net/1885/85217 - P. Pozzi
Anisotropic curve shortening flow in higher codimension
Math. Methods Appl. Sci. 30 (2007), no. 11, 1243-1281. https://doi.org/10.1002/mma.836 - P. Pozzi
Anisotropic mean curvature flow for two dimensional surfaces in higher codimension: a numerical scheme
Interfaces Free Bound. 10 (2008), no. 4, 539-576. https://www.ems-ph.org/journals/show_abstract.php?issn=1463-9963&vol=10&iss=4&rank=6 - P. Pozzi
Anisotropic mean curvature flow in higher codimension
Proc. Appl. Math. Mech. 8 (2008), no. 1, 10849-10850. https://doi.org/10.1002/pamm.200810849 - P. Pozzi
On the gradient flow for the anisotropic area functional
Math. Nachr. 285 (2012), no. 5-6, 707-726. https://doi.org/10.1002/mana.201010043 - P. Pozzi, Ph.Reiter
Willmore-type regularization of mean curvature flow in the presence of a non-convex anisotropy. The graph setting: analysis of the stationary case and numerics for the evolution problem
Adv. Differential Equations 18 (2013), no. 3-4, 265-308. Abstract - P. Pozzi, Ph. Reiter
Approximation of non-convex anisotropic energies via Willmore energy, CD-ROM Proceedings of the 6th European Congress on
Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), September 10-14, 2012, Vienna, Austria, Eds.: Eberhardsteiner, J.; Böhm, H.J.; Rammerstorfer, F.G., Publisher: Vienna University of Technology, Austria,ISBN:978-3-9502481-9-7. - A. Dall'Acqua, P. Pozzi
A Willmore-Helfrich L2-flow of curves with natural boundary conditions.
Comm. Anal. Geom. 22 (2014), no.4, 617--669. https://dx.doi.org/10.4310/CAG.2014.v22.n4.a2
(Preprint version: ArXiv:1211.0949 ) - R. Perl, P. Pozzi, and M. Rumpf
A nested variational time discretization for parametric anisotropic willmore flow.
In: Singular Phenomena and Scaling in Mathematical Models, M. Griebel editor, Springer 2014. https://doi.org/10.1007/978-3-319-00786-1_10 - A. Dall'Acqua, C.-C. Lin, P. Pozzi
Evolution of open elastic curves in Rn subject to fixed length and natural boundary conditions.
Analysis (Berlin) 34 (2014), no.2, 209-222. https://doi.org/10.1515/anly-2014-1249 - P. Pozzi
Computational anisotropic Willmore flow.
Interfaces Free Bound. 17 (2015), no. 2, 189-232. https://www.ems-ph.org/journals/show_abstract.php?issn=1463-9963&vol=17&iss=2&rank=3 - A. Dall'Acqua, C.-C. Lin, P. Pozzi
A gradient flow for open elastic curves with fixed length and clamped ends.
Ann. Sc. Norm. Super. Pisa Cl. Sci. (3) Vol. XVII (2017), 1031-1066. https://doi.org/10.2422/2036-2145.201511_009 - A. Dall'Acqua, P. Pozzi
On a Willmore-Helfrich L2-flow of open curves in Rn: a different approach.
RIMS Kokyuroku,1974, (2015) 68-82. https://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/2015.html - P. Pozzi, Ph. Reiter
On non-convex anisotropic surface energy regularized via the Willmore functional: the two-dimensional graph setting.
ESAIM: Control, Optimisation and Calculus of Variations 23 (2017) 1047-1071.
DOI: http://dx.doi.org/10.1051/cocv/2016024 - P. Pozzi, B. Stinner
Curve shortening flow coupled to lateral diffusion.
Numer. Math. 135 (2017), no. 4, 1171-1205 ( DOI 10.1007/s00211-016-0828-8),
(Preprint version: arXiv:1510.06173) - A. Dall'Acqua, P. Pozzi, A. Spener
The Lojasiewicz-Simon gradient inequality for open elastic curves.
J. Differential Equations, 261 (2016), no. 3, 2168–2209.
doi: 10.1016/j.jde.2016.04.027 .
(Preprint version: arXiv:1604.07559) - G. Mercier, M. Novaga, P. Pozzi
Anisotropic curvature flow of immersed curves.
Comm. Anal. Geom. 27 (2019), no. 4, 937-964. https://dx.doi.org/10.4310/CAG.2019.v27.n4.a6
(Preprint version: arXiv:1605.07860) - U. Dierkes, T. Jenschke, P. Pozzi
Approximation of minimal surfaces with free boundaries.
Interfaces Free Bound. 20 (2018), no. 4, 551–576. https://www.ems-ph.org/journals/show_abstract.php?issn=1463-9963&vol=20&iss=4&rank=4
(Preprint version 2017: SM-UDE-813) - P. Pozzi, B. Stinner
Elastic flow interacting with a lateral diffusion process: The one-dimensional graph case.
IMA J. Numer. Anal. 39 (2019), no. 1, 201–234. https://doi.org/10.1093/imanum/dry004
(Preprint version: arXiv:1707.08643) - Anna Dall’Acqua, Tim Laux, Chun-Chi Lin, Paola Pozzi, Adrian Spener
The elastic flow of curves on the sphere.
Geom. Flows 3 (2018), 1-13. https://doi.org/10.1515/geofl-2018-0001 - S. Okabe, P. Pozzi, G. Wheeler
A gradient flow for the p-elastic energy defined on closed planar curves.
Math. Ann. 378, 777–828 (2020). https://doi.org/10.1007/s00208-019-01885-6
(Preprint version: arXiv:1811.06608) - A. Dall'Acqua, C.-C. Lin, P. Pozzi
Elastic flow of networks: long-time existence result.
Geom. Flows 4 (2019), no. 1, 83–136. https://doi.org/10.1515/geofl-2019-0005
(Preprint version: arXiv:1812.11367) - M. Novaga, P. Pozzi
A second order gradient flow of p-elastic planar networks.
SIAM J. Math. Anal. 52 (2020), no. 1, 682–708. https://doi.org/10.1137/19M1262292
(Preprint version: arXiv:1905.06742) - M. Novaga, P. Pozzi
Uniqueness for a second order gradient flow of elastic networks.
ENUMATH 2019 (2020), 785-792. https://doi.org/10.1007/978-3-030-55874-1_77 - P. Pozzi, B. Stinner
On motion by curvature of a network with a triple junction.
The SMAI journal of computational mathematics, Volume 7 (2021) , pp. 27-55.
DOI: https://doi.org/10.5802/smai-jcm.70
(Preprint Version: arXiv:1911.09636) - A. Dall'Acqua, C.-C. Lin, P. Pozzi
Elastic flow of networks: short-time existence result.
J. Evol. Equ. (2020). https://doi.org/10.1007/s00028-020-00626-6
(Preprint Version: arXiv:1912.09626) - H. Kröner, M. Novaga and P. Pozzi
Anisotropic curvature flow of immersed networks,
Milan J. Math. 89 (2021), 147-186. https://doi.org/10.1007/s00032-021-00329-8
(Preprint Version: arXiv:2012.02490) - P. Pozzi, B. Stinner
Convergence of a scheme for an elastic flow with tangential mesh movement.
ESAIM Math. Model. Numer. Anal. 57 (2023), no. 2, 445--466.
https://doi.org/10.1051/m2an/2022091
(Preprint Version: arxiv.org/abs/2205.02920) - P. Pozzi
On an elastic flow for parametrized curves in Rn suitable for numerical purposes.
Annali di Matematica Pura ed Applicata (1923 -) 202, 2541-2560 (2023).
https://doi.org/10.1007/s10231-023-01329-8 - M. Gößwein, M. Novaga, P. Pozzi
Stability analysis for the anisotropic curve shortening flow of planar networks.
Partial Differ. Equ. Appl. 5, 28 (2024).
https://doi.org/10.1007/s42985-024-00300-3
Book:
- E. Bänsch, K. Deckelnick, H. Garcke, P. Pozzi
Interfaces: Modeling, Analysis, Numerics.
Birkhäuser publishing house (2023). Link
Research Reports:
- P. Pozzi: On anisotropic Willmore Flow, Oberwolfach Reports, Volume 55, 2015, (DOI: 10.4171/OWR/2015/55).
- P. Pozzi: On the flow of elastic networks, Oberwolfach Reports, Volume 3, 2019, (DOI: 10.4171/OWR/2019/3).
- P. Pozzi: On anisotropic curve shortening flow for planar networks, Oberwolfach Reports, Volume 21,No.1, 2024, (DOI 10.4171/OWR/2024/8).