Personensuche
Personensuche
Es wurde 1 Person gefunden.
Fakultät für Mathematik
Anschrift
Thea-Leymann-Str. 9
45127 Essen
45127 Essen
Raum
WSC-O-4.46
Telefon
Telefax
E-Mail
Funktionen
-
Professor/in, Mathematik
Aktuelle Veranstaltungen
-
2025 SS
Vergangene Veranstaltungen (max. 10)
Die folgenden Publikationen sind in der Online-Universitätsbibliographie der Universität Duisburg-Essen verzeichnet. Weitere Informationen finden Sie gegebenenfalls auch auf den persönlichen Webseiten der Person.
-
Classification of global solutions to the obstacle problem in the planeIn: Advances in Mathematics Jg. 472 (2025) 110276Online Volltext: dx.doi.org/ (Open Access)
-
Complete classification of global solutions to the obstacle problemIn: Annals of Mathematics Jg. 201 (2025) Nr. 1, S. 167 - 224Online Volltext: dx.doi.org/ (Open Access)
-
Rectifiability, finite Hausdorff measure, and compactness for non-minimizing Bernoulli free boundariesIn: Communications on Pure and Applied Mathematics Jg. 78 (2025) Nr. 3, S. 545 - 591Online Volltext: dx.doi.org/ (Open Access)
-
Existence, uniqueness, and convergence rates for gradient flows in the training of artificial neural networks with ReLU activationIn: Electronic Research Archive (ERA) Jg. 31 (2023) Nr. 5, S. 2519 - 2554Online Volltext: dx.doi.org/ (Open Access)
-
On global solutions of the obstacle problemIn: Duke Mathematical Journal (DMJ) Jg. 172 (2023) Nr. 11, S. 2149 - 2193Online Volltext: dx.doi.org/ (Open Access)
-
The structure of the regular part of the free boundary close to singularities in the obstacle problemIn: Journal of Differential Equations Jg. 377 (2023) S. 873 - 887Online Volltext: dx.doi.org/ (Open Access)
-
Regularity of the free boundary for a parabolic cooperative systemIn: Calculus of Variations and Partial Differential Equations Jg. 61 (2022) Nr. 4, 124Online Volltext: dx.doi.org/ (Open Access)
-
A free boundary problem for an elliptic systemIn: Journal of Differential Equations Jg. 284 (2021) S. 126 - 155Online Volltext: dx.doi.org/
-
Characterizing compact coincidence sets in the obstacle problem : A short proofIn: St. Petersburg Mathematical Journal Jg. 32 (2021) Nr. 4, S. 705 - 711Online Volltext: dx.doi.org/ (Open Access)
-
Characterizing compact coincidence sets in the thin obstacle problem and the obstacle problem for the fractional LaplacianIn: Nonlinear Analysis: Theory, Methods & Applications Jg. 211 (2021) 112473Online Volltext: dx.doi.org/ (Open Access)
-
Remarks on the decay/growth rate of solutions to elliptic free boundary problems of obstacle typeIn: Mathematics in Engineering (MinE) Jg. 2 (2020) Nr. 4, S. 698 - 708Online Volltext: dx.doi.org/ (Open Access)
-
Singularities in Axisymmetric Free Boundaries for ElectroHydroDynamic EquationsIn: Archive for Rational Mechanics and Analysis Jg. 222 (2016) Nr. 2, S. 573 - 601Online Volltext: dx.doi.org/ (Open Access)
-
Equilibrium points of a singular cooperative system with free boundaryIn: Advances in Mathematics Jg. 280 (2015) S. 743 - 771Online Volltext: dx.doi.org/ (Open Access)
-
Bernoulli Type Free Boundary Problems and Water WavesIn: Geometric Measure Theory and Free Boundary Problems: Cetraro, Italy 2019 / CIME summer school "Geometric Measure Theory and Free Boundary Problems, 02.-06.09.2019, Cetraro / Focardi, Matteo; Spadaro, Emanuele (Hrsg.) 2021, S. 89 - 136Online Volltext: dx.doi.org/