Articles (selection):

  • M. Birsan, M. Shirani, D.J. Steigmann (2024): Convexity conditions for fiber-reinforced elastic shells, Mathematics and Mechanics of Solids, DOI: 10.1177/10812865241261485.

  • M. Shirani, M. Birsan, D. J. Steigmann (2024): Quasiconvexity in a model of fiber-reinforced solids based on Cosserat elasticity theory, Mathematics and Mechanics of Solids, DOI: 10.1177/108128652312176403.

  • D. J. Steigmann, M. Birsan, M. Shirani (2023): Thin shells reinforced by fibers with intrinsic flexural and torsional elasticity, International Journal of Solids and Structures, 285, Article no. 112550.

  • L. J. Nebel, O. Sander, M. Birsan, P. Neff (2023): A geometrically nonlinear Cosserat shell model for orientable and non-orientable surfaces: Discretization with geometric finite elements, Computer Methods in Applied Mechanics and Engineering, 416, Article no. 116309.

  • M. Shirani, D. J. Steigmann, M. Birsan (2023): Legendre–Hadamard conditions for fiber-reinforced materials with one, two or three families of fibers, Mechanics of Materials, 184, Article no. 104745.

  • M. Birsan, P. Neff (2023): On the coercivity of strain energy functions in generalized models of 6-parameter shells. In: H. Altenbach et al. (eds.), Sixty Shades of Generalized Continua. Ser. Advanced Structured Materials, vol. 170, pp. 63-90, Springer, Cham.

  • M. Birsan (2023): Derivation of an elastic shell model of order h^n as n tends to infinity, Mathematics and Mechanics of Solids, 28, 2075-2107.

  • I.D. Ghiba, M. Birsan, P. Neff (2023): A linear isotropic Cosserat shell model including terms up to O(h^5). Existence and uniqueness, Journal of Elasticity, 154, 579–605.

  • M. Birsan, I.D. Ghiba, P. Neff (2022): Existence results for the higher order linear Cosserat shell model, Proceedings of Applied Mathematics and Mechanics (PAMM), vol. 22, e202200030.

  • I.D. Ghiba, M. Birsan, P. Lewintan, P. Neff (2021): A constrained Cosserat shell model up to order O(h^5): Modelling, existence of minimizers, relations to classical shell models and scaling invariance of the bending tensor. Journal of Elasticity, 146, 83-141.

  • M. Birsan, D. Pietras, T. Sadowski (2021): Determination of effective stiffness properties of multilayered composite beams. Continuum Mechanics and Thermodynamics, 33, 1781-1803.

  •  M. Birsan (2021): Alternative derivation of the higher-order constitutive model for six-parameter elastic shells. Zeitschrift für angewandte Mathematik und Physik, 72, Issue 2, Article no. 50.

  • I.D. Ghiba, M. Birsan, P. Lewintan, P. Neff (2020): The isotropic Cosserat shell model including terms up to O(h^5). Part II: Existence of minimizers. Journal of Elasticity, 142, 263–290.

  • I.D. Ghiba, M. Birsan, P. Lewintan, P. Neff (2020): The isotropic Cosserat shell model including terms up to O(h^5). Part I: Derivation in matrix notation, Journal of Elasticity, 142, 201–262.

  • M. Birsan (2020): Derivation of a refined six-parameter shell model: descent from the three-dimensional Cosserat elasticity using a method of classical shell theory, Mathematics and Mechanics of Solids, 2020, Vol. 25(6) 1318–1339.

  • M. Birsan (2020): Closed-form Saint-Venant solutions in the Koiter theory of shells, Journal of Elasticity, 2020, 140 (1), 149-169.

  • M. Birsan, D.I. Ghiba, R. Martin, P. Neff (2019): Refined dimensional reduction for isotropic elastic Cosserat shells with initial curvature, Mathematics and Mechanics of Solids, vol. 24 (2019), 4000-4019.

  • M. Birsan, P. Neff (2017): Analysis of the deformation of Cosserat elastic shells using the dislocation density tensor. In: F. dell’Isola et al. (eds.), Mathematical Modelling in Solid Mechanics, Ser. Advanced Structured Materials 69, Springer Singapore, pp. 13-30, 2017.

  • O. Sander, P. Neff, M. Birsan (2016): Numerical treatment of a geometrically nonlinear planar Cosserat shell model, Computational Mechanics , vol. 57 (2016), 817-841.

  • P. Neff, M. Birsan, F. Osterbrink (2015): Existence theorem for geometrically nonlinear Cosserat micropolar model under uniform convexity requirements, Journal of Elasticity , vol. 121 (2015), 119-141.

  • T. Sadowski, M. Birsan, D. Pietras (2015): Multilayered and FGM structural elements under mechanical and thermal loads. Part I: Comparison of finite elements and analytical models, Archives of Civil and Mechanical Engineering, vol. 15 (2015), 1180-1192.

  • M. Birsan, P. Neff (2014): Existence of minimizers in the geometrically non-linear 6-parameter resultant shell theory with drilling rotations, Mathematics and Mechanics of Solids,   vol. 19 (2014), 376-397. arXiv:1210.1251 , abstract , pdf .

  • M. Birsan, P. Neff (2014): Shells without drilling rotations: A representation theorem in the framework of the geometrically nonlinear 6-parameter resultant shell theory, International Journal of Engineering Science, vol. 80 (2014), 32-42.

  • M. Birsan, P. Neff (2014): On the characterization of drilling rotation in the 6-parameter resultant shell theory, In: W. Pietraszkiewicz, J. Górski (eds.), Shells Structures: Theory and Applications, vol. 3, Taylor & Francis, pp. 61-64, 2013.   arXiv:1303.1979

  • M. Birsan, P. Neff (2013): Existence theorems in the geometrically non-linear 6-parameter theory of elastic plates, Journal of Elasticity, vol. 112, 185-198 , arXiv:1205.0894 , abstract , pdf .

  • M. Birsan, P. Neff, J. Lankeit (2013): Sum of squared logarithms - An inequality relating positive definite matrices and their matrix logarithm, Journal of Inequalities and Applications 2013 : 168, DOI: 10.1186/1029-242X-2013-168. arXiv:1301.6604

  • M. Birsan, T. Sadowski, L. Marsavina, E. Linul, D. Pietras (2013): Mechanical behavior of sandwich composite beams made of foams and functionally graded materials, International Journal of Solids and Structures, vol. 50, 519-530.

  • M. Birsan, H. Altenbach (2013): On the Cosserat model for thin rods made of thermoelastic materials with voids, Discrete and Continuous Dynamical Systems - Series S, Vol. 6, No. 6, 1473-1485.

  • M. Birsan, T. Sadowski, D. Pietras (2013): Thermoelastic deformations of cylindrical multi-layered shells using a direct approach, Journal of Thermal Stresses, vol. 36, 749-789.

  • M. Birsan, P. Neff (2012): On the equations of geometrically nonlinear elastic plates with rotational degrees of freedom, Ann. Acad. Rom. Sci. Ser. Math. Appl., vol. 4,  97-103. pdf

  • M. Birsan, H. Altenbach, T. Sadowski, V. Eremeyev, D. Pietras (2012): Deformation analysis of functionally graded beams by the direct approach, Composites Part B: Engineering, vol. 43, 1315-1328.

  • H. Altenbach, M. Birsan, V.A. Eremeyev (2012): On a thermodynamic theory of rods with two temperature fields, Acta Mechanica, vol. 223, 1583-1596.

  • M. Birsan, H. Altenbach (2012): The Korn-type inequality in a Cosserat model for thin thermoelastic porous rod, Meccanica, vol. 47, 789–794.

  • M. Birsan, H. Altenbach (2011): Theory of thin thermoelastic rods made of porous materials. Archive of Applied Mechanics, vol. 81, 1365-1391.

  • M. Birsan, H. Altenbach (2011): On the theory of porous elastic rods. International Journal of Solids and Structures, vol. 48, 910-924.

  • M. Birsan, H. Altenbach (2011): On the dynamical theory of thermoelastic simple shells. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), vol. 91, 443-457.

  • M. Birsan (2011): On a problem of Truesdell for anisotropic elastic shells, Anal. Sci. Univ. Iasi, ser. Matematica, vol. 57, 91-110.

  • M. Birsan, H. Altenbach (2010): A mathematical study of the linear theory for orthotropic elastic simple shells. Mathematical Methods in the Applied Sciences, vol. 33, 1399-1413.

  • M. Birsan (2010): Thermal stresses in anisotropic cylindrical elastic shells. Mathematical Methods in the Applied Sciences, vol. 33, 799-810.

  • M. Birsan (2009): On the problems of Almansi and Michell for anisotropic Cosserat elastic shells. Archives of Mechanics, vol. 61, 195-227.

  • M. Birsan (2009): On Saint-Venant's problem for anisotropic, inhomogeneous, cylindrical Cosserat elastic shells. International Journal of Engineering Science, vol. 47, 21-38.

  • M. Birsan (2009): Thermal stresses in cylindrical Cosserat elastic shells. European Journal of Mechanics A/Solids, vol. 28, 94-101.

  • M. Birsan (2008): On the dynamic deformation of porous Cosserat linear-thermoelastic shells. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), vol. 88, 74-78.

  • M. Birsan (2008): Inequalities of Korn's type and existence results in the theory of Cosserat elastic shells. Journal of Elasticity, vol. 90, 227-239.

  • M. Birsan (2007): On the theory of loaded general cylindrical Cosserat elastic shells. International Journal of Solids and Structures, vol. 44, 7399-7419.

  • M. Birsan (2007): On Saint-Venant's principle in the theory of Cosserat elastic shells. International Journal of Engineering Science, vol. 45, 187-198.

  • M. Birsan (2007): On the bending equations for elastic plates with voids. Mathematics and Mechanics of Solids, vol. 12 , 40-57.

  • M. Birsan (2006): On a thermodynamic theory of porous Cosserat elastic shells. Journal of Thermal Stresses, vol. 29, 879-899.

  • M. Birsan (2006): On the theory of elastic shells made from a material with voids. International Journal of Solids and Structures, vol. 43, 3106-3123.

  • M. Birsan (2006): Several results in the dynamic theory of thermoelastic Cosserat shells with voids. Mechanics Research Communications, vol. 33, 157-176.

  • M. Birsan (2005): Minimum energy characterizations for the solution of Saint-Venant’s problem in the theory of shells. Journal of Elasticity, vol. 81, 179-204.

  • M. Birsan (2005): Saint-Venant’s problem for Cosserat shells with voids. International Journal of Solids and Structures, vol. 42, 2033-2057.

  • M. Birsan (2004): The solution of Saint-Venant’s problem in the theory of Cosserat shells. Journal of Elasticity, vol. 74, 185-214.

  • M. Birsan (2003): A bending theory of porous thermoelastic plates. Journal of Thermal Stresses, vol. 26, 67-90.

  • M. Birsan (2000): On a theory of porous thermoelastic shells, Anal. Sci. Univ. Iasi, ser. Matematica, vol. 46, 111-130.

 

Chapters in books or articles in Proceedings (selection):

  • D. J. Steigmann, M. Birsan, M. Shirani (2023):  A Cosserat Model for Fiber-Reinforced Elastic Plates. In: H. Altenbach et al. (eds.), Sixty Shades of Generalized Continua. Ser. Advanced Structured Materials, vol. 170, pp. 663-686, Springer, Cham, 2023.
     
  • P. Neff, M. Birsan, I.D. Ghiba (2019): A higher order geometrically nonlinear Cosserat-shell model with initial curvature effects, Proceedings of Applied Mathematics and Mechanics (PAMM), vol. 19, e201900351, 2019.
  • H. Altenbach, M. Birsan, V.A. Eremeyev (2013): Cosserat-type rods. In: H. Altenbach, V.A. Eremeyev (eds.), Generalized Continua from the Theory to Engineering Applications, Springer Wien, CISM (Udine), pp. 179-248, 2013.

  • M. Birsan, H. Altenbach (2011): Analysis of the deformation of multi-layered orthotropic cylindrical elastic shells using the direct approach. In: H. Altenbach, V.A. Eremeyev (eds.), Shell-like Structures: Non-classical Theories and Applications, Ser. Advanced Structured Materials 15, Springer-Verlag Berlin Heidelberg, pp. 29-52, 2011.

  • M. Birsan, H. Altenbach (2010): Continuous dependence and instability in the linear theory of elastic shells. In: W. Pietraszkiewicz, I. Kreja (eds.), Shells Structures: Theory and Applications, vol. 2, Taylor & Francis, London, pp. 55-58, 2010.

  • M. Birsan (2008): On a problem of thermal stresses in the theory of Cosserat elastic shells with voids. In: G. Jaiani, P. Podio-Guidugli (eds.), Proceedings of IUTAM Symposium on Relations of Shells, Plate, Beam, and 3D Models, Springer Science + Business Media, pp. 67-76, 2008.

  • M. Birsan (2007): On the use of Korn's type inequalities in the existence theory for Cosserat elastic surfaces with voids. In: O. Carja, I.I. Vrabie (eds.), Applied Analysis and Differential Equations, World Scientific, Singapore, pp. 11-20, 2007.

 

Books:

  • D. J. Steigmann, M. Birsan, M. Shirani (2023): Lecture Notes on the Theory of Plates and Shells - Classical and Modern Developments. Series Solid Mechanics and its Applications, Vol. 274, Springer, Cham, ISBN 978-3-031-25673-8.
  • M. Birsan (2009): Linear Cosserat Elastic Shells: Mathematical Theory and Applications. Matrix Rom, Bukarest, 230 pp.

  • M. Birsan (2007): Deformation of elastic porous plates: A mathematical study (in Romanian), Matrix Rom, Bukarest, 131 pp.

 

 

Prof. Dr.
Mircea Birsan

 

mircea.birsan@uni-due.de

Room WSC-W-4.15 (in Essen)

Room BC 509 (in Duisburg)



Birsan Klein Neu

Contact

Universität Duisburg-Essen
Fakultät für Mathematik
Mathematik-Carrée
Thea-Leymann-Straße 9
45127 Essen

Office hours

after lectures or by appointment